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Solving a Jules Verne Cryptogram

To save the life of an innocent man, a secret
message must be deciphered; Jules Verne
provides an original technique

Freperick Gass
Miami University
Oxford, OH 45056

“...KSPPSUVJHD? is the end of a secret message that opens one of Jules Verne’s lesser-known
stories, La Jangada, known in English as Eight Hundred Leagues on the Amazon. Set in Brazil, the
story is about Joam Dacosta, who stands wrongly accused of a heinous murder and diamond
theft. The plot of this two-part story is long and involved, with Book One (“The Giant Raft”)
providing most of the adventure, and Book Two (“The Cryptogram”) most of the suspense. Near
the end, as gallows are being erected outside Joam’s prison cell, his friends strive frantically to
discover the message in the cryptogram, for by now it is clear that therein lies Joam’s only hope.
Even Judge Jarriquez attacks the problem. The final paragraph of the cryptogram, the only
paragraph that is actually spelled out in the story, is as follows:
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In (1), which I will regard as a cryptogram in itself, there are 276 letters and also several
features that make it an interesting source of illustrations. My aim is for brevity and variety, using
the Jules Verne cryptogram as motivation to discuss several interesting aspects of cryptanalysis. I
encourage interested readers to consult [1], [5] and [12] for more information about the subject.
References [6], [8], [9], and [11] are good for historical perspective, and [2] is the leading journal in
the field. As you will see, some mathematical ideas begin to appear after we discuss a few
interesting preliminaries. Reference [10] contains statistical details.

Let’s go to work on Jules Verne’s cryptogram. We approach it as scientific detectives,
systematically forming hypotheses and checking them out. The first thing to consider is the
language of the original message, the most obvious choices for us being English, Portuguese
(because of the Brazilian setting), and French (the original language of Verne’s tales). French
would seem to be the most likely choice, but that particular detail of the problem will not be
critical until later on in our investigation.
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At any level of cryptanalysis it is important to identify other reasonable initial assumptions
about the origin of a cryptogram. In the present case, we will assume that the writer of the
message had essentially a one-time-only need for secrecy, and that the cryptogram was devised by
him/her alone or in collusion with a very few confidants. Now let’s move on to the central
question: What method was used to transform the original message into a cryptogram?

One familiar way to transform a message is to replace some or all of the words and phrases by
code words and phrases given in a special book that resembles a dictionary. In fact, the word
“code” refers precisely to such a system, even though the general public often uses “secret code”
and “code-breaking” to embrace all aspects of cryptic writing. Let’s tentatively rule out the
possibility of a code in the present case, because one is unlikely to go to the trouble of preparing a
code book when there is evidently only one message at stake.

One standard alternative to code is transposition, whereby the original message is rearranged so
as to be unintelligible. For example, the message could be divided into five-letter groups, and then
each group rewritten in reverse order or subjected to some other fixed permutation. A more
complicated version of this scheme plays a crucial role in Verne’s Journey to the Center of the
Earth, and a still more complicated one appears early in his Mathias Sandorf. (For an interesting
and thorough discussion of Jules Verne as cryptographer, consult reference [4].)

To rule out transposition in the present case, we refer to the most fundamental piece of
information at the cryptanalyst’s disposal, the frequency distribution. For our cryptogram, this
information is shown in TABLE 1.

ii A B CDE F GHIJKLMNO P Q R ST UV X Y Z
fir 3 4 3 16 9 10 13 23 4 8 9 9 9 9 12 16 16 12 10 & 17 13 12 19 12

TaBLE 1. Frequency distribution of letters in the cryptogram (1).

It is well known that certain letters—e and ¢, for instance—tend to appear with the highest
frequency in standard English, and similar results are found in other languages. If this cryptogram
were the result of a transposition, then all 23 of those H’s would have been present in the original
message, and likewise all 16 Q’s, 12 Z’s and so forth—an unlikely possibility for any modern
language.

A simple alternative to code and transposition is the scheme known as “monoalphabetic
substitution,” whereby each letter of the original message is replaced by a particular “cipher
letter” substitute according to some correspondence such as the one pictured in (2).

Monoalphabetic Substitution

Plain:a bcde fghijklmnopqrstuvwxyz
Cipher: PQSUVWXYZINTEGRALBCDFHJKMO )
Sample message: f ourscoreandsevenyears.. .
Cryptogram: WRFBC S RBVPGUCVHVGMVPBC. . .

The example in (2) shows how this substitution transforms a plain message into a cryptogram. If
one were to draw up the frequency distribution of such a cryptogram, it is likely that V" would be
the most frequently used letter, possibly followed by D, since those two are the cipher replace-
ments for e and ¢, respectively. (As a rule, I will use capitals for cipher text letters and lower case
for plain text in this article.)

A careful reading of Verne’s cryptogram reveals the occurrence of HHH at two locations,
prompting one to question the likelihood of a monoalphabetic substitution, since those three H’s
would have to result from three of whatever is the plain counterpart of H. Three-in-a-row is
possible in a plain message, however. Consider phrases like “three eggs” and “small legs,” for
instance. Still, those two occurrences of “HHH ” look suspicious, and after a fruitless search for
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clues based on the assumption of a monoalphabetic substitution, Judge Jarriquez is prepared to
consider an alternative hypothesis, as we will, later.

Although we won’t stop to consider techniques used on monoalphabetic substitution crypto-
grams, there is a very nice mathematical scheme that the judge could have used to cast further
doubt on the likelihood of a monoalphabetic. The idea—discovered by William F. Friedman in
1920 and published in [3]—is to calculate a statistic that measures the variation in the frequency
distribution, and then compare that statistic with the value one would expect in a monoalphabetic
case. This statistic, the index of coincidence (I.C.), is closely related to a formula used by
geneticists to measure the diversity of a species.

Let f,,fg,..., [ be the frequency of letters 4, B,..., Z, respectively, in a given cryptogram
that contains N letters. Then

o S fim1 1 .
1.C.= = (fi—1). 3
EA NN-1 N(N-1) EAf’(f‘ ) 3)

For Verne’s cryptogram we have N = 276, and from TABLE 1 we calculate I.C. = 0.044. Using
either of the formulas in (3), one can make the following interpretation of Friedman’s index: If
two letters were chosen at random (without replacement) from the cryptogram, then the I.C. is
the probability that those two letters would be alike. The probability of getting a particular letter
as our first choice is f;/N, and (f; —1)/(N — 1) is the probability that our second letter will be
the same.

What value would one expect the I.C. of a cryptogram to have, approximately? If the
cryptogram were actually a plain, unenciphered message, say, in standard English, then it could be
considered a random sample of N letters from an extremely large population. The relative
frequencies of letters in that population are shown in TABLE 2. (Please note that any proposed
frequency distribution for a modern language must be taken with a grain of salt. The one in
TABLE 2 was generated by the author of [12] from a sample of 1000 letters.)

Letter: a b ¢ d e f g h i j k I m
% Frequency: 7.3 09 30 44 130 28 16 35 74 02 03 35 25

Letter: n o p ¢ r s t u v o w x y z
% Frequency: 7.8 74 27 03 77 63 93 27 13 16 05 19 01

TABLE 2. Relative frequencies in standard english.

If two letters are chosen at random from that larger population, then the probability of a
matched pair is called the “kappa value” for that particular language. Therefore, we have
k =Y(p;)?, where i varies among the letters of the alphabet, and p, is a letter’s probability
according to the relative frequency distribution. So from TABLE 2 we have p, = .073, and so on up
to p, = .001. The « values for several languages are shown in (4).

Language K

English 0.066

French 0.076

German 0.076 @)
Portuguese 0.079

Russian 0.053

Spanish 0.078

The fact that links the two previous paragraphs is this: The I.C. for a monoalphabetic
substitution cryptogram is equal to that of the original plain text message, because in both cases
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the summation involves the same numbers f; (although, following the substitution, the numbers
are associated with different letters). Because of this observation, we would expect the I.C. of the
cryptogram to be an approximation of « for the language of the original message.

In fact, it turns out that the I.C. is an unbiased estimator for k. (Students of statistics may
have noted already that the I.C. and k bear some resemblance to sample variance and population
variance formulas, respectively.) Comparing the I.C. of Verne’s cryptogram with the information
in (4), we might conclude that Verne’s I.C. is a rather poor approximation of x for English,
French or Portuguese, and so the cryptogram is not likely to be a monoalphabetic. But wait. We
cannot judge the goodness of an approximation without some sort of error estimate or (in this
case) an alternative to monoalphabeticity that is suggested by I.C. = 0.044.

Polyalphabetic substitution

“Polyalphabetic” means that each plain letter has more than one possible cipher equivalent, so
that e, for instance, might be represented by J, H, G, or even E, at the various locations where e
occurs in the original message. One way to accomplish such a substitution is shown in (5).

Gronsfeld Polyalphabetic Substitution
Keyword: 5203
Key sequence: 52035203520352035203520352035203520... )
Plain message: fourscoreandsevenyear sagoourfathers...

Cipher message: KQUUXEOUJCNGXGVHSA EDWUAJTQUUKCTKITS...

It is a simple scheme attributed to the 17th century Count of Gronsfeld, and it employs the digits
of a “keyword” to determine cipher letters. If key digit 5, say, lies above a certain letter of the
plain message, then the cipher letter that corresponds to it is the letter 5 positions later in
the alphabet (with A being the letter that follows Z). If the key digit for a certain letter is 0, then
the cipher letter is the same as the plain.

The effect of most polyalphabetic substitutions on a frequency distribution is to flatten it out.
The distribution of letters in an original message is apt to exhibit the variety predicted by tables
like the one in TABLE 2. But after polyalphabetic substitution, one finds that high frequency letters
have spread their wealth of occurrences among several possible cipher equivalents, and likewise
the poverty of a low frequency is suffered by more than just one cipher equivalent. The ultimate in
flat distributions is the one wherein all letters are equally represented. For instance, if all 26 letters
of standard English were equally likely, then we would have the flat distribution and x value
shown in (6). Of course, smaller alphabets yield larger «(flat). If we assume French without a w,
say, then «x(flat) = 0.040.

Kappa For a Flat Distribution

i = A through Z (26 letters)
p,=1/26~0.038 (6)

x(flat) = ¥ p> = ¥(1,/26)° = 26(1,/26)° = 1,/26 = 0.038.

Since the I.C. of Verne’s cryptogram is closer to (flat) than to x for English, French or
Portuguese, we are led to entertain the hypothesis of a polyalphabetic substitution.

Judge Jarriquez has already arrived at that hypothesis, and he has focused upon the Gronsfeld
as the most reasonable polyalphabetic scheme to consider first. But now the good judge has
reached an impasse, for he sees no way to discover the keyword that unlocks the message. For him
and for author Verne, logical analysis has run its course and must now be supplemented by a final
burst of desperate searching and good fortune.
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We, on the other hand, have several means of attacking a suspected Gronsfeld cryptogram. My
plan is to complete this article by looking at several interesting and to some extent duplicating
techniques, rather than simply pursue one line of reasoning toward the goal of solution.

Key length

Let’s use (5) to collect some ideas about the structure of the Gronsfeld system. Since the
keyword in that example has four digits, we say that 4 is the “key length,” and that the plain and
cipher messages may accordingly be partitioned into four “components.” For example, the key
digit 2 governs the component ocaeysoar... in the plain message and the component
QECGAUQCT ... in the cipher message (check the letters below the 2’s). Notice that the cipher
component is a very simple monoalphabetic variation of its corresponding plain component: in
the example above, each cipher letter is simply two spaces beyond its plain equivalent in the
alphabet. (This simple, shift-type monoalphabetic is called a Caesar Cipher, after its most famous
user.) So, if one can divide a Gronsfeld cryptogram into its separate cipher components, the rest
of the solution should be relatively easy. And the way to identify the components is to determine
the key length.

In 1863, a Prussian military officer named F. W. Kasiski published a simple number-theoretic
means of searching for the key length. Like so many techniques of cryptanalysis, it deals with
pattern repetitions that may exist in the cryptogram. Also, it is the basis of the solution discussed
in [7].

Look again at (5) and look for repeated sequences of letters in the cryptogram: there are two
QUU’s and two JT’s. With the plain message and the key sequence before us, we see that the JT'
repetition is simply a fluke that represents no special interplay among the key sequence, the plain
and the cipher; but the QUU is a different story. Generally speaking, the longer repetitions (QUU
as opposed to JT, here) tend to be more significant because we feel intuitively that long
repetitions probably happen by design rather than by chance. In the case of QUU, the cipher
repetition happens precisely because both occurrences of “our” in the plain message coincided
with the repetition of 203 in the key sequence. Let’s call this a “special repetition.”

What is special about a special repetition is the way the keyword repeats itself in the interval
between the two occurrences. In (5), beginning with the first QUU, we find exactly six repetitions
of the keyword 5203 before the next occurrence of QUU. This observation suggests that we look
for long repetitions in any suspected Gronsfeld cryptogram, determine the lengths of the
intervening intervals (figured as above for QUU), and proceed on the assumption that whole
repetitions of the keyword fit exactly into those intervals. In other words, the key length is a divisor
of those interval lengths. That is Kasiski’s approach.

In TABLE 3 is the data for a Kasiski analysis of Verne’s cryptogram. If we assume that these
repetitions are all special, then the key length must be a common divisor of 186, 192, 60, 54, and
12, and so it must be 2, 3, or 6.

We could use Friedman’s I.C. to help us identify the most likely key length among 2, 3, and 6.
The idea behind it is to recall that each cipher component is really just a simple monoalphabetic
substitution (specifically, a Caesar Cipher) of its plain counterpart. To test the hypothesis that the
key length is n, one divides the cryptogram into » components and calculates the I.C. for each

DDQF at interval of length 186=2-3-31
RYM 192=2°%-3
TOZ 186=2-3-31
RPL 60=2%-3-5
HHH ©54=2.3
KYUU 12=2%.3

TaBLE 3. Kasiski analysis of Verne’s cryptogram.
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Assumed keylength n  I.C.’s of the n components

0.045 0.057

0.055 0.052 0.054

0.058 0.053 0.040 0.055

0.041 0.040 0.042 0.047 0.050

0.061 0.083 0.071 0.065 0.074 0.071
0.036 0.044 0.042 0.039 0.042 0.047 0.046

~N N A WN

TABLE 4

one, looking to see whether those values are reasonably close to « for a spoken language— some-
where between .06 and .08. The results for n =2, 3, and 6, among others, are shown in TABLE 4.

Another idea, one that bypasses the Kasiski approach, is simply to test every hypothetical key
length from n =2 on up, using the method described above. This approach works well when one
is aided by a computer, and for Verne’s cryptogram the results are shown in TABLE 4. Doesn’t
n =6 suggest itself nicely? Before leaving the index of coincidence, I should mention that it was
devised for use with ciphers much more complicated than the Gronsfeld. In that context its use
here might be considered an example of mathematical overkill.

Finding the plain components

Let’s assume now that Verne’s cryptogram is a Gronsfeld with a key length of 6. Then it has six
components, both in plain and in cipher, and the first of the cipher components begins
PYZZXRIX.... (Just take the first letter of the cryptogram and every sixth one thereafter. Using
modular arithmetic, we could say that the ith letter is in the 1st component if and only if
i=1mod6.) I want to show you an interesting way to search for the corresponding plain
component. Since we are getting close to the particulars of the original message, the time has come
to think in terms of some particular language—in this case, French. Some frequency data for
standard French are given in TABLE 5.

Our problem, of course, is that we do not know the first digit of the keyword, the digit that
governs this first component. Call that digit d for the moment. If d happens to be 0, then the
cipher and plain components are the same. If d happens to be 1, then the cipher component is
letter-for-letter one position beyond its plain component in the alphabet. In (7) we see all the
possibilities for this first component of the Verne cryptogram.

Digit d Corresponding Plain Component

0 DyzZXriX. ..

oxyyvghv ...
RUXXUPZU . . .

muvvtoft. ..

ltuusnes . .. @)
ksttrmdr . ..

jrssqleq. ..

iqrrpkbp . ..

hpqqojao . ..

goppnizn. ..

O 00 1 N i AW N =

The question is, which of the possible plain components is most likely the correct one? Another
way to put the question is to ask which line contains the letters that are most likely to be part of
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Letter: a b c d e f g h i J k ! m
% Frequency: 94 10 26 3.4 15.9 1.0 1.0 0.8 8.4 0.9 0.0 5.3 32
Letter: n 0 V4 q r s t u v x y z
% Frequency: 7.2 5.1 2.9 11 6.5 7.9 73 6.2 2.2 0.3 0.2 0.3

TABLE 5. Relative frequencies in standard French (without w).

the original plain text message, and therein lies a clue to our next step: using the data in TABLE 5,
we assign a probability to each line of component in (7). More specifically, we treat each line as a
statistical experiment, with the letters being the results of independent trials. In (7), if d =1, then
the plain component is oxyy ..., and the probability associated with the component would be the
product of the individual letter possibilities, p, - p, -p,-p, - ---, an exceedingly small value. For
the sake of convenience, one can replace each probability p by the corresponding percentage
100p, which would yield an exceedingly large value, and then scale back a bit by finding instead
the logarithm of that value:

log(100p,) +1og(100p, ) +1og(100p, ) +1og(100p,) + - - .

(The percentage may be taken directly from the frequency distribution in TABLE 5.) In (8) we see
the complete computer-generated results and the fact that d =4 yields the plain component of
highest probability. On this basis it appears that the first component of the plain message is
Ituusnes . .. .

Sum of log-percentages for corresponding plain component

58.0
59.7
54.4
68.6
79.7 8)
60.7
53.3
58.2
58.7
58.8

00 1 N A W RO,

o

By using the above procedure on all six cipher components of the Verne cryptogram, we can
discover the plain components and hence the original message. Before proceeding to the message,
however, I want to show you my favorite means of solving a suspected Gronsfeld.

The probable word method

This method of solving Gronsfelds is interesting for at least two reasons. First, we try to
imagine what thoughts might have occupied the writer of the cryptogram, and we use intuition or
psychology or whatever to choose words that might have been used to express those thoughts.
Second, with a well-chosen “probable word,” we can discover the keyword and the original
message in a very straightforward way.

Take the Verne cryptogram, for instance. If it really does concern the crime with which Joam
Dacosta is charged, then “Dacosta,” “diamant,” and other (French) words dealing with particu-
lars of the crime are probable word candidates. Let’s stick with “Dacosta” for the sake of
illustration. If “Dacosta” is mentioned in the original message, then somewhere in the cryptogram
is a sequence of seven letters that forms a cipher equivalent of that word. Furthermore, the
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Gronsfeld scheme guarantees that that sequence satisfies what I shall call the “Nines Condition”:
none of the cipher letters is more than nine positions later in the alphabet than its plain
counterpart in “Dacosta.”

Here, then, is what we do, with the aid of a computer if possible: check each sequence of seven
consecutive cipher letters in the cryptogram to see if it satisfies the Nines Condition. (As a related
problem, you might try to estimate the probability that a sequence of seven randomly-chosen
letters will satisfy that condition. The probability is quite small.) In other words, we search for
locations in the cryptogram where the cipher equivalent of “Dacosta” might be found.

Display (9) shows how this search begins. In each line of (9) a different sequence of cipher
letters is checked as a possible location for “Dacosta”; and an “x” signifies that the cipher letter
at that location is too far down the alphabet beyond its counterpart in “Dacosta.” For instance
when the first seven letters PHYJSLY of the cryptogram are checked, the computer prints
“x7xx0xx” to show that only the second and fifth cipher letters are within the prescribed distance
(a maximum of 9) of their counterparts. Thus H and S are, respectively, 7 and 0 positions beyond
the “a” and “s” of “Dacosta.”

Checking Possible Locations of “Dacosta” in the Gronsfeld

Beginning at 1st cipher letter: X Txx0xx
2nd 4x74x43
3rd x9xx593 )
4th 6x99x9x
Sth XXXXXX5

6th 8x1xxx3

A complete computer search reveals that only one of the 269 possible cipher sequences satisfies
the Nines Condition. It is near the middle of the cryptogram, and it yields the printout

1343251. (10)

Now we know a sequence of key digits for the cryptogram, and we could begin deciphering
letters even without knowledge of the keyword. However, since we know the key length to be 6, it
is evident that the keyword is 134325, or else 343251, or 432513, or one of the other three cycled
versions of (10) (without the repeated 1). We go back to the start of the cryptogram and try out
these sequences on the first six cipher letters, finding very quickly that 432513 produces French.
With the key sequence 432513, we then recover the original message. Displayed below, with
punctuation and spaces between words, it is a dramatic confession that even nonreaders of French
can fairly well interpret. Its remorseful author claims sole responsibility for the crime in question,
and he clears the name of Joam Dacosta.

Le véritable auteur du vol des diamants et de ’assassinat des soldats qui escortaient
le convoi commis dans la nuit du vingt deux janvier mil huit cent vingt six n’est donc
pas Joam Dacosta injustement condamné a mort c’est moi le misérable employé de
Padministration du district diamantin, oui moi seul qui signe de mon vrai nom, Ortega.

In La Jangada, Judge Jarriquez very nearly discovers the probable word method during his
initial bout with the cryptogram, but after several hours he gives up in frustration. Next morning,
when he learns that the writer might have been named Ortega, it finally dawns on him (!) He
feverishly examines the end of the message (where any sincere declaration would bear a signature),
derives the keyword, and just barely saves the life of Joam Dacosta. By virtue of this solution,
Jules Verne is credited with the first published exposition of the probable word method for
Gronsfeld ciphers.
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Perron’s Result and a
Decision on Admissions Tests

Matrix theory is used to rank several options

Ep BARBEAU

University of Toronto

Toronto, Ontario, Canada M5S 141

Her decision had been indicated in an instant, but it had been

made after days and nights of anguished deliberation. She had
known she would be asked, she had decided what she would
answer, and, without the slightest hesitation, she had moved her
hand to the right.

Frank R. Stockton
The lady, or the tiger?

A choice between two options can be the result of “anguished deliberation.” Still worse can be
having to choose one of many courses of action. Factors to be considered are often contradictory
in the options they indicate. Should one flip a coin or draw a straw? Generally, it will not do to
consign the matter to a random device, which ignores whatever information and judgments that
should be brought to bear. Rather, one would prefer to have at hand a technique which combines
objectivity with an ability to cut through the confusion and uncertainty of ranking and weighting
the relevant factors.

This paper treats the analytic hierarchy process, developed by T.L. Saaty and described by him
in a number of publications (for example, [7], [8], [9]). We will not go into the difficulties of
ranking two possibilities, but will suggest a way in which pairwise rankings can be synthesized
into an ordering of more than two options. Our example will be a problem faced by a typical
university in the Province of Ontario: what is the best method on which to base the admission of
students?

Until the mid-60s, the province’s education ministry operated the “departmentals,” a universal
system of high school graduation examinations whose results were virtually the sole criteria for an
admission decision. When these were abandoned, the universities turned to grades assigned by the
school and scores from aptitude tests. As you can imagine, when the aptitude tests in their turn
were dropped, suspicions arose that marking standards in the schools were being relaxed. One
indication was that government scholarships for high school graduates with at least an 80%
average were awarded to 8% of the students in 1965 and 27% in 1981. Worse, there was evidence
that the perceived inflation of grades was not uniform throughout the school system. Some
students with high grades performed badly at the university level; perhaps they were preventing
the admission of highly qualified students from more rigorous schools. As the government was
deaf to entreaties to restore a universal and objective system of examinations, the universities were
impelled to consider action on their own.

Three suggestions were put forward:

G: Continue to accept grades assigned by the high schools, but review individually those
students with averages within, say, 3% of the cutoff point for admission, informally
“introducing whatever extra knowledge of the student or the school that might be available.
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C: Calibrate the marks submitted by the high schools, adjusting upwards the marks from
schools whose students have in the past performed better than average at university and
downwards the marks from schools whose students earned university grades excessively lower
than their school grades.

E: [Institute a system of admission examinations which all candidates are required to take.

The question of choosing one of these options is governed by a number of considerations, not all

of which lead to the same alternative.

F: Fairness. The method should be equitable. Acceptance of raw high school scores seems to be
most unfair. Even with hand review of individual cases, the quality of the information
available is likely to vary widely. Calibration seems to be fairer, but it, too, is flawed. Some
schools might have sent too few students to university to produce a reliable calibration
factor. In any case, the calibration of a student’s mark is based on the past and may not give
due weight to changes, such as a new teacher or principal, which might rapidly alter
standards. Admission examinations, which all candidates take on an equal footing, seem
fairest of all.

P: Predictability. One should have a fair indication of future success at the university. In this
respect, it emerged from a 1977 study that the old provincial examinations were an
indifferent indicator of future success and that, in fact, grades provided by the school were
slightly better. Thus, it appears that we are doing about as well as possible, although some
fine tuning might be possible through calibration or a cleverly designed objective examina-
tion.

L: Low cost. The method used should be economical and convenient to administer. Accepting
high school grades involves a slight extra cost in considering borderline cases. There would be
an initial expense in setting up a calibration formula, but once the system is in place, the
calibration of marks can be closely linked with the entering of other admissions information
and the continuing cost would be small. The cost of examinations is a much more serious
factor. They must be prepared, administered, and marked, and the results would probably
have to be entered into the data base at a time different than other admissions information.
At least some of this might be offset by a candidate’s fee, but this brings us to the fourth
criterion.

A: Acceptability. The method should be politically acceptable. Calibration is resented by some
schools and teachers’ organizations who see it as a rating of schools; despite assurances of
confidentiality, they are concerned about the use made of a comparison of schools. While
teachers might prefer, but not be enthusiastic about, admissions tests, their superiors are
worried about the possible demands on time and resources to administer such examinations.
Furthermore, universities which forego admission tests might attract students from institu-
tions which require them.

It is not clear which of the options G, C, or E should be adopted. Criterion F favours the
third, but E is clearly inferior to the other two under criterion L. Option C is probably slightly
favoured by P. As for criterion A, it points to G. Much depends on how seriously each criterion is
taken. An eminent or wealthy institution could ignore 4 or L, while these criteria are significant
to smaller and more impoverished colleges. Formulating a ranking of the four criteria and using
this ranking to decide among the three options is a demanding task, for which some tools would
be desirable.

One such tool is the analytic hierarchy process (AHP). It is by no means the only seriation
technique available (see, for example, [2], [3], [5], [11]); in fact, Perron’s Theorem lies at the
bottom of one method for ranking competitors in a round-robin tournament [6, p. 44]. However,
this process is capable of allowing for a decision problem to be decomposed into several levels. At
each level, there is a pairwise comparison of the options according to higher-level criteria which
are melded mathematically into an overall ranking. In the present example, there are three levels.
At the third level are the three choices to be ranked. However, because of the difficulty of arriving
at an a priori ranking of these causes, one introduces a second level—the four criteria. The three
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choices are assessed separately with respect to the four criteria; the four criteria are ranked with
respect to the overall goal which constitutes the first level of the hierarchy; this leads to a blended
ranking of the choices which takes into account all the criteria.

The mathematical requirements for the AHP at this basic level are indeed modest. The matrix
theory involved is accessible to a student in a first linear algebra course; the theorem that powers
the engine is a result of Perron concerning eigenvectors of a matrix with positive entries, although
in practice the necessary mathematical apparatus can be set up without a direct appeal to Perron’s
Theorem. All that is required of the user is the ability to make a comparison between two items;
AHP then produces for him not only a ranking of the options but a measure of its reasonableness.
Refinements of the process will endow it with the ability to respond to judgments changing over
time and to criteria which not only are applicable to those of another level, but which feed into
each other. However, the admissions problem will illustrate only the main line of the approach
without these complications.

How to weight several options

Suppose we are given n options which have to be ranked in order of importance or
significance: Q,, Q,,...,Q,. In the absence of some objectively determined property of the
options, such as cost, it is difficult to come up with a ranking with confidence. We may be beset
by second thoughts: should this pair really be ranked so far apart, or should that triple really be in
that order? Our instinct is to look at the options a few at a time; but then it is difficult to get a
synthesis. If it is a committee, rather than an individual, which is doing the ranking, the results
can be anomalous. The members of a three-man committee might give individual rankings of
three options as Q;, Q,,05; 0,0, Q;; and Qs, Q;, @,, respectively. On a majority vote for
each pair, the committee as a whole would rank Q; ahead of Q,, Q, ahead of Q,, and Q, ahead
of Q,. To cope with this intransitivity, one should try to get some sense of whether the decision
maker regards one option as being slightly, or significantly, better than another; in other words, it
might be desirable to have some numerical measure of the superiority of one option over another.
Even if the committee, with the help of a numerical scale and some negotiation, manages to avoid
the snare of intransitivity, it may not be preserved from a milder form of inconsistency. While it
might agree that Q, is twice as important as Q, and that Q, is three times as important as Qj, it
may well shrink from assigning Q, six times the importance of Q,.

To arrive at a procedure, let us work backwards. Suppose that we have actually succeeded in
attaching to each option Q; a positive real number w, which measures its importance. Then it
would be easy to deduce from this a measure of the relative importance of two of the options: Q,,
with weight w;, can be regarded as being more important than Q;, with weight w;, by the factor
a;; = w,/w; (we make use of a convention here: if a,; <1, then Q, is actually less important than
Q;; alternatively, we can say Q; is more important than Q, by the factor a; =w;/w,). It is
reasonable to let a,;=1. We now form an nXn matrix A= (qa;;) which has the following
properties:

() a;=1, a;;>0,and a;,=a;;' forall i, j.

(i) a;;a;, =ay forall i, j, k.

(ili) The matrix A has rank 1, with each column proportional to the vector C = (wy, w,,...,w,)"

and each row proportional to the vector R = (w; L, wy L,...,w1);

(iv) 0 is an eigenvalue of A with multiplicity n — 1, and the trace of A is n; it follows from this
that there is a remaining eigenvalue which is simple and equal to #;

(v) C is a column eigenvector and R is a row eigenvector of A corresponding to the
eigenvalue n. Thus, in this special case, our relative weighting of the options Q; appears in
the form of an eigenvector corresponding to the largest positive eigenvalue of a matrix
with positive entries.

Imagine that we now perturb the entries a,; of A. Its eigenvectors and eigenvalues will be
correspondingly perturbed. However, if the perturbation is small, there will be an eigenvalue close
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to n whose column eigenvector can be regarded as a pretty good approximation to the relative
weighting of the Q,. This suggests that we can look at the ranking problem in this fashion: For the
n options, there is an ideal but unknown weighting of their significance by an n-vector of positive
real numbers. In order to discover this vector, we assign to each pair (i, j) a positive real number
a;;, which measures the relative importance of Q; and Q. The two are equally important when
a;;=1; Q, is more important than Q exactly when a;; > 1. The only condition we impose on the
assignment of the a,; is the property (i) mentioned earlier. This is already a strong assumption,
human psychology being what it is, as questions eliciting the relative importance of two options
may draw quite different responses depending on how they are asked ([12]). A matrix A with
entries a,; satisfying (i) is called a reciprocal matrix.

Suppose it turned out that, with brilliant insight, we managed to pick the g,; to achieve
condition (ii). (In this case, we say that the matrix A is consistent.) Then, the kth column is equal
to a; times the jth column, so that the rank of A is 1 and A satisfies (iv). Indeed, if
(€15 €35...,¢,)7 is any column and (7, r,,..., 7,) any row eigenvector with eigenvalue 7, we have
r/t;=c¢;/c; = a;;. Thus, the eigenvectors can be used to weight the options in a way which is
consistent with our pairwise comparisons.

In the case that A is not consistent, the situation is pleasantly satisfactory; A is subject to the
following theorem.

PERRON’S THEOREM. If A is a matrix with strictly positive entries, then A has a simple positive
eigenvalue X ,,, which is not exceeded in absolute value by any of its (complex) eigenvalues. Every
(row or column) eigenvector corresponding to A, is a constant multiple of an eigenvector with
strictly positive entries.

This important result is treated in [1], [4] and [10] and is widely applicable in such areas as
probability, numerical analysis, economics [1, p. 242], and demography. To get a rough idea of
why this theorem holds, let @ be the “positive” orthant consisting of all vectors in R” which have
nonnegative coordinates. Then A, considered as linear operator on R”, maps ¢ into a proper
convex subset of itself; indeed, the positive halves of the axes of R* get mapped by A to rays in the
interior of O, and A(0), the image of @ under A, is the convex hull of these rays. The sequence
{A"(0) = A(A"(0))} of successive images of @ under 4 is a nested sequence of subcones of @,
each strictly smaller than its predecessor, which collapses down to a single direction as »
increases. This direction determines an eigenvector of A with positive coordinates. Another way of
looking at the result is to apply the Brouwer Fixed Point Theorem to the mapping ¢ defined on
the simplex of vectors in @ the sum of whose coordinates is 1, where ¢(X) is that multiple of
A(X) which lies on the simplex.

If A is any reciprocal matrix containing our numerical judgments concerning all the pairs of the
options Q;, let C be the positive column eigenvector for A_,, the sum of whose entries is 1; we
can take the entries as measures of the relative importance of the Q,. While this is reasonable for
consistent matrices, how much confidence can we have in the process for nonconsistent matrices?
First, there is a ready alternative. Instead of using the column vector, why not take the row
eigenvector? We could form the reciprocals of its entries, normalize the vector obtained to make
its entries add to 1, and use these to measure the relative importance of the Q,. In general, the
result will be different. Secondly, if our matrix is far from being consistent, then this points to
some unreasonableness in our original judgments and we can hardly expect to get from them a
reliable weighting. The best answer to the first point is: yes, there are alternatives which we could
use, but the method stands up to the rigours of field testing quite well. In fact, with a proper
choice of scale, one can recapture from subjective judgments the relative illuminations (as
measured by the inverse square law) of chairs at various distances from a light source, or the
relative distances of cities [2, pp. 38, 41]; another model which actually places cities roughly in
their proper places on a map is discussed in [5]. The recapturing is not exact, however, and one
might expect to do as well using row rather than column eigenvectors. As for the second point, we
shall see later that we can actually provide a numerical measure for the acceptability of our
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judgment matrix. Thus, the method is self-correcting in the sense that we can know when we
ought to subject our judgments to closer scrutiny and revision.

How to balance different criteria

As we saw in the discussion of the opening section, there may be several criteria with which to
rank our options and these may point in different directions. To handle this situation, we first
attach weights to the criteria, C;, C,,..., C,, using the method of the last section: suppose these
are entries of the column vector Z = (z,, z,,..., z,)7, normalized so that its entries add up to 1.

Now evaluate the n options according to each criterion in isolation. For the jth criterion,
suppose the weights are the entries of the column vector (y;;, ¥, ,5---» Vs j)T. An overall weighting
of the options is found by taking a weighted average, using Z, of the weightings for the several
criteria. In order that we actually do achieve the proper mix of the different criteria, the total
weights for the column vectors for the various criteria should be the same; accordingly, we
suppose that the column vectors ( j)T are normalized so their coordinates add up to 1. We then
get a blended weighting (w;, w,,...,w,)T of the n options with

Wi =JnZ1 +yi222+ +yinzn (ISISH)

Observe that w; +w, + - -+ +w, = 1. More briefly, we can write W= YZ, where Y is the n Xs
matrix with entries y; ;.

It is straightforward to generalize this to a more complex decomposition of the decision
process, in which there are several levels of criteria, those at one level being judged according to
the criteria at the next higher level. At the lowest level are the options to be considered; at the
highest, the most general overriding criteria. For each pair of adjacent levels, we can form an r X s
matrix whose s columns represent the weightings of the r lower-level criteria with respect to the s
higher-level criteria. If Y,,Y,,...,Y,, are the matrices, with normalized columns, for each pair of
adjacent levels from lowest to highest respectively, and Z is the weighting of the highest level
criteria, the overall weighting of the options is given by a matrix product Y}Y, - - - Y, Z.

Now let us turn to the university admissions problem.

Applying the analytic hierarchy process

The first task is to come up with a numerical measure of the various pairwise comparisons.
This requires a scale sensitive enough to classify the importance of one choice over another as
mild, moderate, strong, or overwhelming, but not so fine as to lead to spurious or uncertain
determinations. After much experimenting, the most credible weighting of possibilities is found to
be achieved by a nine-point scale of relative importance, described in TABLE 1 [7, p. 53].

The three options we have to decide among are G (accepting high school grades), C (calibrating
grades) and E (requiring admission tests). The criteria to be applied are F (fairness), P
(predictability), L (low cost), and A (acceptability). In order to rank the criteria, we make
pairwise comparisons. Suppose we rate L as slightly more significant than P; then we can assign
to the pair (L, P) the number 2, and to the pair (P, L) the reciprocal 1/2. On the other hand,
assigning to the pair (F, P) the number 5 is an indication of our sense that fairness is much to be
desired over predictability if we had to choose between them. A possible table of values, in which
every entry measures the relative importance of the row variable over the column variable might
be

ANy
Bl W s Ny
W N = Ny
— N W N
N v A

(Sl
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These entries constitute a 4 X 4 matrix with a positive eigenvalue which exceeds the magnitudes of
all the other eigenvalues. We take the normalized column eigenvector for this eigenvalue for a
relative weighting of the criteria. In this example, it is (0.543,0.085,0.213,0.159)7 with eigenvalue
4.14. Thus fairness is the most important criterion, followed by economy, political acceptability

and predictability, in that order.

Intensity of
importance Definition Explanation
1 Equal importance Two options contribute
equally to the objective
3 One moderately more Experience and judgment
important than slightly favour one
the other option over the other
5 One essential or Experience and judgment
strongly more strongly favour one
important than the other option over the other
7 One has very strong or One option is favoured
demonstrated impor- very strongly over
tance relative to the other the other; its domi-
nance is demonstrated
in practice
9 Extreme importance The evidence favouring
one option over the
other is conclusive
2,4,6,8 Intermediate between Useful when compromise
adjacent scale values is needed
Reciprocals If option i has one of above integers assigned to it when compared with j,
of above then j has the reciprocal value when compared with i

TABLE 1. A nine-point scale of relative importance.

A rating of the three options, G, C, E, with respect to the four criteria, F, P, L, A, might give
the four arrays shown in TABLE 2.

F P
How much fairer is the What is the gain in predicta-
row choice than the bility by taking the row choice
column choice? rather than the column choice?

G C E G c E

G 1 1/3 175 G 1 12 2

c 3 1 1/3 C 2 1 3

E 5 3 1 E 12 13 1
L A

How much more acceptable is
the row choice than the
column choice?

How much more economical
is the row choice than
the column choice?

G C E G c E
G 1 3 6 G 1 5 4
c 13 1 4 c 1/ 1 13
E 1/6 1/4 1 E 1/4 3 1

TABLE 2. Ratings of the three options G, C, E with respect to the four criteria F, P,L,A.
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The eigenvalues and eigenvectors of the matrices in TABLE 2 corresponding to the four criteria
are the following:

eigenvalues: F3.03 P 3.01 L 3.05 A3.09
G 0.105 0.297 0.644 0.674
eigenvectors: C 0.258 0.540 0.271 0.101
E 0.637 0.163 0.085 0.226

Thus, two criteria favour accepting raw grades, one criterion favours calibration and the
remaining criterion favours examinations. However, the criterion favouring examinations has the
most importance. A matrix multiplication gives the overall weighting of the three options:

0.105 0.297 0.644 0.674)(0.543 0.327
0258 0.540 0.271 0.101 (] 0.085| _| 0.260

0.637 0.163 0.085 0.226 || 0.213 0414 |
0.159

The relative weights attached to grades, calibration and examinations are, respectively, 0.327,
0.260, and 0.414, so that having examinations is the preferred option. Despite their high cost, the
perception that they enable the fairest admission process is conclusive. Now, of course, if our
judgments change in any respect, then there will be a corresponding change in at least some of the
matrices, resulting in a different weighting.

While the figures obtained in a subjective situation such as this are not as compelling as figures
arising from a physical or engineering application of mathematics, nevertheless there is consider-
able value in going through the process. We have to isolate the important ingredients in the
situation and then systematically assess their relative importance. Secondly, the figures themselves
encourage us to review our analysis. We have gained a sense of the mechanisms which lead to our
weighting. If the weights produced by the process are not in accord with our preconceived notions,
we are encouraged to check the validity of our assessments along the way and rethink the whole
situation. Either there is some factor which we did not take into account, or else we were a little
extreme in some of our judgments.

Row vector versus column vector

Our earlier discussion indicates that it would be equally reasonable to take either the column or
the row eigenvector of the reciprocal matrix in determining the relative weights of several options.
In this section, we pursue a modest exploration of this question and find that, indeed, the two
methods do not always yield the same ranking. To establish notation, let A denote the Perron
eigenvalue of the reciprocal matrix A, let C denote one of its positive column eigenvectors, and R
one of its positive row eigenvectors. Let R’ be that column vector whose entries are the reciprocals
of the corresponding entries of R. The row and column eigenvectors will yield exactly the same
weighting if and only if C and R’ are proportional. For any positive vector X, let X denote the
normalization obtained by dividing each entry of X by the sum of all the entries; thus, the entries
of X add up to 1.

A 2 X 2 reciprocal matrix is trivially consistent and the row and column eigenvectors give the
same weighting. Let us suppose that A is the 3 X 3 matrix

1 u v
wl 1 w
v ! owl o1

with u,v,w all positive. Each column of A can be interpreted as measuring the relative
significance of three options with respect to a fixed one. One might then expect that the overall
weighting of the three options would be some kind of mean of the three columns. Keeping in mind
the possibility that the row eigenvector and the column eigenvector give the same weighting when
R’ is proportional to C, we are led to examining two geometric mean vectors:
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(a3, w133, U_1/3W_1/3)T,

a column vector whose entries are the geometric means of the entries of the corresponding rows of
the matrix, and
(u_1/3v_1/3, u1/3w_1/3, vl/3w1/3)’

a row vector whose entries are the geometric means of the entries of the corresponding columns of
the matrix. Both of these turn out to be eigenvectors with eigenvalue 1+ y+y~!, where
y=u3"3wl/3 That this is the Perron eigenvalue can be seen from the fact that the
characteristic polynomial of A, which is

(1-x) =31 -x)+(p*+y ) =(1-x+2)[(1 - x)* = 2(1 - x) + (22 - 3)]

with z=y + y~1, has one real root 1 + z and two imaginary roots (except when y =1 and x =1
is a double root). Thus, when A is a 3 X 3 matrix, C and R can be determined by taking geometric
means and thus give the same weighting.

We turn to the 4 X 4 case, and let G denote the column vector whose entries are the geometric
means of the rows of A and H denote the row vector whose entries are the geometric means of the
columns of A. From the reciprocal property of A, it follows that G and H’ are proportional. The
situation is now more interesting. For example, let A have the special form

1 u v w
ul 1 t v
b | u
wl 7l 4l

with all entries positive. For such matrices, the row and column eigenvectors are simply related; if
C=(a,b,c,d)T, then it is easy to see that R =(d, c, b, a) is an eigenvector. In fact, for suitable
A,
Aa=a+bu+co+dw
Ab=au'+b+ct+dv
Ae=av 4+ b7 +c+ du
Ad=aw '+bv t+cut+d.
Suppose that R’ is proportional to C. Then ad = bc. Setting p=ub/a=ud/c, q=wd/a,
r=tc/b, and s = vc/a, and equating four different expressions for A, we obtain
l+p+s+q=p t+1+r+s=st+rt+1+p
=g l+s +pl+1,
which is equivalent to

1 r—q

1- 1-
p—p =r—q= rq and S_S_1=__q§= qr.

r q
Either r = g, in which case it follows that w = tu?, or else rg=1, in which case it follows that
2
v* = wt.
Conversely, suppose that in the matrix A, it turns out that w = tu®. Then, G is a column
eigenvector with eigenvalue A =2 + y/v/ut ++/ut/v, so that R’ and C are proportional. On the
other hand, if v> = wt, then G is an eigenvector with eigenvalue

A=2+ (ul/ztl/“/wl/“) +(w1/4/u1/2t1/4),

so that again R’ and C are proportional.
To see what happens when both the conditions w = tu? and v* = wt fail, consider the special
case u=v=1¢=1.Then A satisfies the equation
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N—d4N-2(w+wl=-2)=0.

For R’, G, and C, we can take, respectively,

X -2\ > 2(A—1+w)
A-1+w D) Y X2\
1 1 1
1 1 1
N -2\ | | 200=14w)
2A—1+w) ¢ N -2\

These will, in general, differ. It might be suggested that, although the actual relative weights differ,
the rankings induced by R’ and C are the same. However, even this is not so. Consider the
following example, designed to give G = (1,1,1,1)T:

1 5 2 o0l

A=]02 1 25 2
05 04 1 5
10 05 02 1

In this case, A, =802, C=(0.22,0.19,0.26,0.33)", R=(0.33,0.26,0.19,0.22), and R =
(0.18,0.23,0.31,0.28). The column eigenvector ranks the four options in the order 4,3,1,2, while
the row eigenvector ranks them in the order 3,4,2,1. Here, one has to be careful in coming to a
conclusion. However, in this example, the fact that the Perron eigenvalue far exceeds the trace of
the matrix gives us pause, as we shall see in the next section.

One has the sense that, in the general case, the vector G has an interesting role to play. In
particular, it would be of interest to compare G with R’ and C in the case when R’ and C are
proportional.

Consistency

A critic of the AHP method of ranking might complain that the pairwise comparisons that
went into the matrix A could be wildly out of line. To take an extreme case, the option pairs
(P,Q), (Q, R), (P, R) might be rated 3, 5, and 1/2 respectively, so that P is somewhat more
important than Q, Q considerably more than R, while, in a direct comparison, P is less
significant than R. While a thoughtful assessment is not likely to produce such an extreme
anomaly, nevertheless, some inconsistency is bound to occur. Fortunately, there is a mathematical
way of getting a handle on the situation.

If we review the case that A is a 3 X 3 matrix, we see that the Perron eigenvalue 1 +y + y~! is
always at least 3, with equality exactly when y = 1. But this condition is equivalent to uw = v,
which in turn characterizes the consistency of the matrix A. Thus, the largest eigenvalue of A
exceeds 3 if and only if the matrix is not consistent, and equals 3 otherwise.

More generally, suppose that A =(a,;) is an nXn matrix with positive entries satisfying
a;;=1/a;. Then, if A, is its eigenvalue of maximum absolute value, A, >n, and A is
consistent if and only if A, =n. The proof of this is pleasantly straightforward, and worth
including here. Let (wy, w,,...,w,)” be any positive column eigenvector with eigenvalue A=A ...
Then, for 1 <i<n,

n
— -1
A=Y a ww .
Jj=1
Summing these equations over i yields

nA= Za,.jiji_1 =Y a,.jij,-_1 +n, (1)
i)J i)
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taking account of a;=1. With y,;=a, jij,.‘l, we have y;,; = yijl, so that equation (1) can be
written
A=Y (yij+yi;1)+n. 2
1<i<j<n

The sum in (2) is taken over (;) =(1/2)n(n—1) terms, so that the right-hand side is at least
equal to 2((1/2)n(n — 1)) + n = n?, with equality if and only if each y, ; =1, in other words, if
a;; = w,/w;. But this characterizes the consistency of A, and the result follows.

Thus, the difference A ,,, — n can be regarded as a measure of consistency. Since the sum of all
the eigenvalues of A is n (the trace of A), A —n is the negative of the sum of the remaining
eigenvalues of A. The average of these eigenvalues is —pu, where

_A-n
e

ij

This is the consistency index of A. If p is too large, then the process is likely to be defective and
the judgments made should be reviewed. In practice, one judges p to be satisfactory if it is no
more than about 10% of the mean consistency index for a sample of 500 randomly generated
matrices satisfying a;;= aj‘i1 with entries drawn from the set {1/9,1/8,...,1/2,1,2,...,9}. In
the table below, the first row gives the order of the matrix and the second row the random mean
consistency index:

n: 1 2 3 4 5 6 7 8 9 10
w: 000 0.00 058 09 1.12 1.24 132 141 145 1.49

In the admissions example, the 4 X 4 matrix has consistency index 0.14 /3 = 0.05, less than 10%
of the random consistency index, which is 0.90. The consistency indices of all the 3 X 3 matrices in
that example are also well within the acceptable range. However, the 4 X 4 matrix of the last
section which produced different rankings from the row and column eigenvectors has consistency
index 4.02/3 = 1.34, which is poor. It would be interesting to investigate how strong is the
connection between the consistency index and the coherence of the row and column rankings.

Conclusion

We pursued the admissions procedure example on the assumption that the criteria and options
could be organized into a hierarchy in a cut and dried way, and that at each level, we could take
each criterion in isolation from the others. However, life is usually more complicated than this.
Often, the criteria used might be interrelated. For example, the fairness of an admissions
procedure would to some extent be governed by its predictability and cost (especially if the
candidates were charged a fee); political acceptability might also hinge on other factors—if the
procedure is perceived as fair, it would be much easier to swallow by all concerned. One way to
handle this would be to introduce into the hierarchy an extra level in which the four criteria
F, P, L, A are weighted with respect to each of the same four criteria. These could be combined
(by means of a matrix multiplication as indicated earlier) with the preliminary weightings of G, C,
and E in terms of the criteria. More complex situations will involve a nonlinear sort of hierarchy
in which components of the criteria will affect each other in either direction. These complications
are taken up, with examples, in [7] and [8] (see [7, chapter 8, pp. 206-222] for a detailed discussion
of how to handle a system with feedback).

AHP is capable of considerable refinement to cope with the complexity of a situation for which
a decision is required. Built into it is the capacity to adjust conveniently one’s ranking of options
to new judgments and new pieces of information, whether slight or significant, as well as a
warning bell in the form of the consistency index. AHP has been used in many practical situations
of industrial or government policy, and has been used to second-guess Britain’s going to war over
the Falkland Islands, [9]; it has also been the focus of experiments in which the conclusions are
subject to independent checking [7, pp. 38-42].
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As for the question of admissions policy, what was decided in the end? Actually, at the time
this was written, the end had not yet come. The government is winding up a substantial revision of
the curriculum, and the Minister of Education has opened the door to the possibility of the
province restoring some form of universal testing of high school graduates. A government
commission looking into the universities has also recommended tests. All this has had the effect of
bringing to the fore another criterion, “sensitivity to political instability.” On this basis, it was
perceived that the universities would be foolish to embark on an elaborate new venture while
matters are still quite unsettled. For the time being, nothing will change.

The author warmly thanks T. L. Saaty for introducing him to the analytic hierarchy process and suggesting an
expository paper. He would also like to thank Prof. Saaty and the referees for their helpful advice and a number of
the references.
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Continued Roots
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Examples of infinitely nested roots appear from time to time in the literature and as problems
to be considered. One instance was the problem presented by Ramanujan in the India Journal of
Mathematics (see [4]) and later converted to problem A6 of the 1966 Putnam Examination, where
the contestant was asked to “Justify the statement that

3=\/1+2/1+3\/1+4\/1+5\/ﬁ~- »

(see [16]). Another similar Putnam Examination problem was rephrased as a problem in this
MAGAZINE in May, 1983 (for the problem and solution, see [12]). Other problems involving nested
radicals are given in [10], [11], and [17]. There seems to be little general theory for nested radicals,
however, and even no uniformity as to form or notation. This situation contrasts sharply with the
case of other infinitely repeated operations (infinite series, products, and continued fractions),
where the abstract theory is well documented in the literature. In this note we will consider certain
infinitely nested roots and derive a few general results.

Our goal will be to consider what we shall call a continued (square) root, by which we shall
mean an expression of the form

ao+ (@ +y(ay+ y(as + y(as+ - +)))), (1)
where the a,’s are numbers. Familiarity suggests we limit ourselves to the case where the a,’s are
real numbers, with a; > 0 for i > 1, or even be more restrictive and require the a;’s to be integers.

Several questions about continued roots present themselves naturally at this point—in fact,
they are precise analogues of familiar questions posed for series, products, and continued
fractions. Some of these are:

(1) What does it mean for a continued root to converge to a number L?

(2) What conditions on the a;’s guarantee convergence of the root?

(3) What numbers can be represented by continued roots?

(4) Is there any uniqueness to such representations?

(5) What numbers are represented by ““terminating” or “repeating” continued roots?

In our exploration of continued roots in this paper we shall give at least partial answers to the
above five questions.

Definition and Convergence

For ease in notation we will denote the continued root in (1) by /(ay, a;,...), and we write
L,= /ay,...,a,) for the continued root truncated after a,. Patterning our definition after what
is done with infinite sums and products and with continued fractions, we define

Jag,a,...)=1m L,,
h— o0
provided the indicated limit exists.
One would like at this stage to identify circumstances under which the above limit exists. In the
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event that the a,’s are all nonnegative real numbers for i > 1, the truncations L; will form a
nondecreasing sequence of real numbers; hence the sequence {L } has a limit if and only if the
L,;’s are bounded (see, for example, [3], p. 16).

One case where the L,’s are bounded is the case in which the a,’s themselves are bounded.
Suppose, for example, that a; < B for all natural numbers i. We may safely take B to be greater
than or equal to 2, and so a; < B < B(B —1). Then it is easy to see that

L;<y(ay, B(B—1),...,B(B-1)),
where there are i terms B(B —1). But
L <ay+/B(B-1)<ay,+ B*=a,+ B;
Ly<ay+(B(B-1)+/(B(B—-1))<a,+ /(B(B-1)+B?)
=ay,+(B(B-1)+B)=a,+ /B>=a,+B.

Continuing in this manner (or, rather, using a proof by mathematical induction) we get that
L; < ay + B, regardless of the index i. We have thus established the following

PROPOSITION. If {a;} is a bounded sequence of real numbers and if a; is nonnegative for i > 1,
then y(ay, a,,...) converges.

This first result is far from the best result one can get for convergence of continued roots, but it
is a start. Naively, the next step might be to proceed as follows: suppose a;,a,,... are
nonnegative real numbers with /(a,, a,,...)= L, and suppose M > 0. Then

ML=M(ay+ [(a,+ [(ay+ ---))) = Mag+ My(a, + /(a, + --+))
=Ma0+\/(M2a1+M2,/(a2+ -~))=Ma0+,/(M2a1+,/(M4a2+M4\/(a3+ )))
=Ma0+¢(M2a1+\/(M4a2+,/(M8a3+ "~)))=\/(Mao,Mzal,...,Mziai,...).

A careful examination in terms of limits shows that this procedure is indeed legitimate! Using the
sequence ¢, =1 and M =2 gives a convergent continued root for which the terms of the root are
unbounded.

One might speculate that all continued roots with a; > 0 for i > 1 converge (such a result does
hold, after all, for continued fractions—see, for example, [9], p. 67). However, such is not the case,
and in fact one gets the following.

THEOREM. Suppose a; is real for all i > 0 and that a; > 0 for i > 1. Then y(a,, a,,...) converges
if and only if the set
={%a,:i>1)
is bounded.

Proof. If: Suppose S is bounded by a number B. By the observation before the statement of
the theorem, then, ,/(ao, ay,...)=By(a’y,a’},...), where 0 <a’;<1 for i>1. The Proposition
tells us that /(a’y, a’},...) converges, and hence /(a,, a;,...) converges.

Only if: Suppose now that § is not bounded. Thus for any real number B there exists an N
such that 2"/(a,) > B. We wish to show that { L} diverges, that is, that it increases without
bound. Thus we want to show that for any B there exists a number N > 0 such that L, > B for
n> N. Since the L,’s form a nondecreasing sequence it suffices to find an N such that Ly>B.
Let B be given, and let N be such that el J(ay)> B. A simple check then shows that

> (ay)> B.
Representmg numbers as continued roots

Once the question of convergence is settled one can “solve” some continued roots—particu-
larly those with certain repeating patterns. We illustrate the technique with two examples. Note
that it was important to settle the convergence question first, in order that our assumption that we
can write L = y(ay, ay,...) be justified!
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ExaMpLE. Let L= y(0,1,1,1,...). Then L= y1+ 1+ 1+ ---)), so L*=1+ 1+ 1
+ --+)),or L*=1+ L. Solving, we get L> —L—1=0, so L=(1 + /(1 + 4))/2; since L> 0 we
get L=1/2+ ;5/2. This number is the “golden ratio” of the Greeks (see, for example, [9], p. 82).
In fact, this example is just a special case of the more general formula

n=y0,n(n—1),n(n-1),...),
which can be shown to hold for any number n > 1.

EXAMPLE. Let L= 1+ /(7+ 1+ T+ ---)). Here L*=1+ y(7+ y1 + (7 + ---))), so
L2—1=yT7+y1+yT+ ), (L*-1)2=7+ 1+ 7+ ---)=T+L,or [*—2[*>—L—
6 = 0. By Descartes’ rule of signs (see [14], vol. II, p. 471) this equation has one and only one
positive root, which is ‘L. By inspection, this root is 2, so L =2.

These examples point to answers to two more questions about continued roots. The technique
used to solve for the roots in the examples can be used to show that any terminating or repeating
continued root represents a root of a monic polynomial of degree 2' for i > 1; in case the entries
a; in the root are all integers, the root represents a root of a monic polynomial over the integers.
The second observation to be made based on the examples is that there may be several distinct
ways to represent the same number as a continued root. Thus, 2 can be represented /(2,0,0,0,...);
/(0,4,0,0,...); 40,2,2,2,...); or 4(0,1,7,1,7,...).

The question remains of which real numbers can be represented by continued roots; for
example, can « or /9 be so represented? If we use real numbers in our continued roots we can of
course represent any real number. For example, if x is nonnegative, x = (0, x2,0,0,...). Thus
this question really concerns just the case where the a,’s are integers.

Let x be any number, and suppose we want to write x as /(a,, a,,...). If any of the numbers
a;, i > 1, are nonzero, necessarily nonnegative integers, then we will have x = a, + r, where r > 1.
Thus if we are choosing a,, we should choose it to be less than or equal to x — 1. Let us choose a,,
to be the integer so that x is in the interval (a, + 1, a, + 2]. A similar analysis shows that if a,> 0
for any i > 2, then x =a, + /(a, + r), where r > 1. Thus we might choose a; so that x is in the
interval (aq + y(a; + 1), ay + y(a, + 2)]. Note that since y(a; +2)<2, a; is 0, 1, or 2. We can
continue this pattern: assuming x is in the interval (/(ay, a1,..., a; +1),/(aqy, ay,..., a;, + 2)],
choose a;,; so that x lies in (y/(ag,ay,...,a;,, +1),/(ay, ay,...,a;.1 + 2)]. Again, note that
a,,, 80,1, or 2 for i > 0.

The continued root /(a,, a;,...) we get in this manner converges by our first proposition. We
would like to know that, for any choice of x, the value L of our continued root is equal to x.
Since for each truncated root L; we know that x > L,, we conclude that x > L. To prove that
x = L, we need to show that x cannot exceed L. We do this by assuming that x — L = ¢> 0, and
obtain a contradiction. Assume x — L = ¢ > 0. Since the L,’s converge to L, we can choose an i so
that L — L, < ¢/2. Also we know that x isin the interval (/(ay, a;,..., a; + 1), /(ay, ay,..., a; + 2],
which we shall denote by (A, B]. We express what we know graphically in FIGURE 1. (Note that
we use two number lines in FIGURE 1, not necessarily intended to have uniform scale, as we do
not yet know how 4 and L compare.)
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We complete the proof in essentially two steps. First, we show (i) that 4 — L, > B — A. From
this it will follow, since B—A4>x—A4 and x—L;>e¢, that a— L, >¢/2, so A> L. We then
prove (ii) that there is an n with L, > A; it then follows that L, > L, which will contradict the
fact that L is the limit of the nondecreasing sequence { L, }.

To show (i), that 4 — L, > B— A, consider the function f(x)= /(ay,a;,...,a;_;,x+1)—
Jag, ay,...,a;_y, x). Straightforward computation shows that f’(x) <0 for x > 0, and thus that
f(x) is decreasing on [0, 00). Thus f(ay) > f(a, + 1); but this is the statement that 4 — L, > B — A.

Now we show that (ii) there is an n with L, > 4. By inspection, if for any k > i, a, # 0, then

L,>A=yay,a,...,a;+1), so the only way we can have no L, >4 is to have a,, =0 for all
m>i. But by construction, x> A, that is, 4 = j(a, apeeer G +1)<x< (ag,ay,...,a;+2).
Since lim, _, ,,*’/2 =1, there is a k such that /(a,, ay,..., a, +*2) < x. But in this case, even if g,

were O for j=i+1,...,i+k—1, a;,, would be at least 1 by construction and we would have (in

any case) L,,, > A. This was what we needed to complete the proof of the following.

THEOREM. Any real number can be represented as a continued root j(a,, ay,...,), where the a;’s
are integers and for i> 1, a; is 0, 1, or 2.

ExaMpLE. We will illustrate the construction outlined above to get the first several entries in a
continued root expansion of > /9. Recall that our rule is to choose each a; so that

Nag,ay,...,a;,+1)<x< /(aq,ay,...,a;+2).

The computations will be done using a calculator; thus we get x=3/9 = 2.0800838. Since
2 <x<3, a, must equal 1. To determine a,, note that

1+/1=2,
1+ 2 =2.4142136,

so a; = 0. Continuing,
1+(0+,1)=2,
1+ /(0+ /2) =2.1892071,
so a, =0;
1+ 0+ 0+ ,1))=2,
1+ 40+ /(0+ ,2)) =2.0905077,
$0 a; =0;
L4+ y(0+ /(0 + (0 +1))) =2,
1+ 0+ 0+ /(0+,2))) =2.0442738,
1+ /(0+ /(04 y(0+,3))) =2.0710755,
1+ 0+ /(0 + 40+ y4))) =2.0905077,
S0 a, =2,
1+ (04 y(0+ y(0+ (2 + 41)))) = 2.0710755,
1+ 0+ 0+ 0+ /(24 ,2)))) =2.0797685,
1+ 0+ 0+ 0+ /(24 /3)))) =2.0857922;

so as=1.

Evidently our calculator would allow us to go a few more steps, but we would be limited by our
seven-place accuracy. At any rate, there will be a continued root representation of */9 which
begins /(1,0,0,0,2,1,...).
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Notes on references

One other, older reference to continued roots in the literature is in Frangois Viéte’s formula

2/m=y5y(3+508) v+ +5))

published in 1593 ([2]; also [1] and [14], vol. I, p. 312; see [15] for a proof of the formula). While
the formula is an infinite product of finite continued roots, its convergence does imply that
/0,1/2,1/8,1/128,...)=1. Many introductory calculus texts treat infinite series, as do several
special books devoted to just that topic; see, for example, the books by J. A. Green ([3]) and
James M. Hyslop ([6]). Such treatments of infinite products are harder to find, but the interested
reader is referred to the appropriate sections of books by Hirschmann ([5]) and Knopp ([8]).
Continued fractions are discussed in books by Khinchin ([7]) and Olds ([9]), and in the article by
Richards ([13]). The development of continued roots presented in this note and the questions
addressed parallel the usual approaches to series, infinite products, and continued fractions, and
reinforce concepts of convergence seen in these more conventional areas.

The author is indebted to Edward J. Allen of the University of North Carolina at Asheville for providing several
references.
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A Surprise from Geometry

Ross A. HONSBERGER
University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl

It is patently obvious that two vectors in the plane (all vectors are considered to issue from the
origin), which meet at an angle that does not exceed a right angle, can be spun around the origin
so that both vectors lie in the nonnegative quadrant (that is, the endpoint (x, y) of each vector has
coordinates which are both nonnegative). It is not quite so obvious that a set of 3 vectors in
3-space, which in pairs meet at angles not exceeding a right angle, can always be spun around the
origin to lie in the nonnegative octant. It is not at all obvious, but is also true, that any set of 4
vectors in 4-space, no 2 of which meet at an angle greater than a right angle, can be arranged to lie
in the nonnegative orthant (orthant is the general term for quadrant and octant).

At this point, who can resist the conjecture that any set of n vectors in n-space, no 2 of which
meet at an angle exceeding a right angle, can be rotated to a position so that all the vectors in the
set are contained in the nonnegative orthant? Isn’t it surprising that this is false for every n > 4?

We shall see that the set S, consisting of the five 3-dimensional vectors i = (1,0,0), j = (0,1,0),
i+k=(@,0,1),j+k=(0,1,1),andi+j—k= (1,1, —1), cannot all lie in the nonnegative orthant
of a space of any dimension.

itk
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First of all, it is easy to check that each pair of vectors in S meets at an angle not exceeding a
right angle, and a glance at the figure shows that they fan out too far to fit into an octant of
3-space. We shall establish our general claim by arguing to a contradiction. Suppose, then, that in
some n-space, our set S can be accommodated completely within the nonnegative orthant. Then
the coordinates of each vector in S are all nonnegative. Since .S does not contain the zero vector,
none of these n-tuples of coordinates will consist entirely of 0’s; in each case, at least one
coordinate must actually be a positive number.

Now, the crux of our argument consists in showing that the positioning of S in the nonnegative
orthant necessarily also brings into this orthant the companion vector k = (0,0, 1), even though it
does not belong to S.

While each coordinate of a vector in S is either positive or zero, a coordinate in the description
of k’s position may presumably be positive, zero, or negative. Let us investigate the feasibility of a
negative coordinate in k. If k were to have a negative coordinate in a component in which the
vector i has a zero, then that component in their sum i + k would have a negative value. But, since
i+ Kk belongs to S, no component of i+k is negative. Consequently, k can have a negative
coordinate only in a position in which i has a positive coordinate (recall that the coordinates of i
are either positive or zero). Similarly for the vector j: a negative component in k, opposite a zero
in j, would yield a contradictory negative component in the vector j + k of S. As a result, k can
have a negative coordinate only in a place in which both i and j have a positive coordinate.

But there are no such places! If there were, such a pair of positive coordinates would contribute
a positive amount ¢ to the dot product i - j. However, since i and j are orthogonal, we have i-j=0
in every coordinate system, yet there would be no way to nullify the above contribution ¢ because
there are no negative coordinates in any vector of S (in particular, in i and j). It follows, then, that
k possesses no negative coordinates and must also reside in the nonnegative orthant.

Now we can conclude easily. Since both the vectors k and i+ j—k have no negative
coordinates, their dot product k- (i+j— k) cannot be a negative number. However, obvious
orthogonalities yield

k-(i+j—-k)=k-i+k-j—k-k
=0+ 0 — k%

which is negative, since k is not the zero vector, and the argument is complete.

This argument is due to the Israeli mathematician Moshe Roitman of the University of Haifa;
it was most kindly communicated to me by his colleague Joe Zaks during his recent visit to
Waterloo (summer, 1984). He also noted that L. M. Kelly and Shreedharan of Michigan State
University in East Lansing had a similar example of a set of 5 vectors which lent itself to an easy
argument based on inner products.

Proofs of the cases of vectors in 3-space and 4-space can be found in [1]. It is interesting that
the concluding remark in this paper is an example of 8 vectors that need a space of at least 9
dimensions for their accommodation in the nonnegative orthant.
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A Transfer Device for Matrix Theorems

WiLLiam P. WARDLAW
U. S. Naval Academy
Annapolis, MD 21402

Our title refers to a method for obtaining a number of results for matrices over arbitrary
commutative rings by “transferring” the corresponding results for matrices over the real numbers.
The technique was suggested by a proof [S] in a calculus text which showed det(4B)=
(det A)(det B) for A and B nonsingular, and then extended the result to singular 4 or B by
continuity. More or less, the technique described in this note is an algebraic substitute for the use
of continuity which can serve as a rigorous replacement for waving the hands and stating “For
commutative rings, everything goes through as for fields.” The existence of the transfer device
obviates the need to do undergraduate linear algebra over commutative rings and suggests that a
restriction to the field R of real numbers (or perhaps the field C of complex numbers) will suffice,
since many results can be “transferred” to more general settings in a graduate course.

Throughout this note, R is an arbitrary commutative ring, R”*" is the collection of all m X n
matrices over R, R, = R"*", and R[¢]is the ring of polynomials over R. Here, R[¢]is considered
to be the ring formally generated by ¢ and R, containing R as the constant polynomials and all of
the powers t* for positive k, even if R does not have an identity 1. Finally,

M(R,1)= U R[:]™
m,neN
is the partial algebra of all elements of R = R,, all polynomials in R[¢]= R[t],, and all matrices
with entries in R[¢]. The two operations + and - in M(R, ¢) are ordinary matrix addition (with
A + B defined when 4 and B are the same size) and matrix (or scalar) multiplication (with 4 - B
defined when A4 is mXn and B is n X p or when either 4 or B is 1 X 1). The phrase partial
algebra refers to the fact that the operations are not always defined.
Recall that the determinant of a square matrix 4 = (q;;) in M(R, ) is
detd= ) (sgno)ay, ay, - a,,.
oES,

The characteristic polynomial of 4 in R, is f, = f,(¢) = det(:] — A), and the (classical) adjoint or
adjugate of 4 is AdjA =C7, the transpose of the cofactor matrix C=(c, ), where ¢;;=
(—1)*/det A(i|j) and A(i|j) is the matrix resulting from A by deleting the ith row and the jth
column.

The transfer device and applications

TRANSFER THEOREM. Let R and R’ be commutative rings and 0: R— R’ be a ring homomor-
phism. Then 0 induces a homomorphism

¢:M(R,t) >M(R, 1)

satisfying:
1) ¢(a)=0(a) for every a€ R,

Q) (Y a;th)=Y 0(a)t foray,ay,...,a,€R,

i=0 i=0
() A=(a;;)€R[1]"*" implies $(A)=((a;))),
4) ¢(A+ B)=¢(A)+¢(B) when A + B is defined,
(5) ¢(A4-B)=¢(A)-¢(B) when A - B is defined,
(6) ¢(det A)=det(¢pA) when A is square,
(D &(f4) =fs(1) when A is square, and
8) ¢(AdjA)=Adj(pA) when A is square.
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The proof of the Transfer Theorem is not difficult: we define ¢ by properties (1)-(3) and then
prove properties (4)-(8). It is clear that ¢ is well defined by properties (1)-(3). The proof of
properties (4) and (5), which show that ¢ is a homomorphism, is straightforward but tedious, and
hence is omitted. Properties (6)—(8) then follow because det 4, the coefficients of f,, and the
entries in Adj A4 are all polynomials in the entries of 4.

Throughout the remainder of this note applications of the Transfer Theorem will be demon-
strated by using it to prove, first, some very well known theorems about determinants over
commutative rings and, later, some less well known theorems.

THEOREM 1. If A and B are square matrices over a commutative ring R, then
det( AB) = (det A)(det B).

Proof. Let A =(a;;) and B = (b;;) be n X n matrices over the ring R. Thenlet A= (4, B) =
{@y1s-- s Qpys b115-.., b,,) be the subring of R generated by the entries of 4 and B. Let
X =(x;;) and Y =(},;) be n X n matrices over the field R of real numbers with 2n? independent
transcendental entries x;; and y;; in R\ Q. Then let K= Q(X,Y)= Q(X11,--+5 X5 Vi1>+++» Yan)
be the 2n?-fold transcendental extension of Q, and let X = (X, Y ) = (X115 s Xpns Vi1r--+» Yun )
be the subring of K generated by the entries of X and Y. Since the transcendentals x;; and j,;
are algebraically independent over Q, they generate a free commutative ring (that is, the free
algebra over the class of all commutative rings, with the free generating family {x;;, y;;}, as
defined in [1]), which is actually just the set of all nonconstant polynomials in the polynomial ring
ZIX,YI=Z{x11,...» Xpns N115---» Van)- Hence, there is a homomorphism §: X — A such that
0(x;;)=a,;,0(y;;)="b;; for each i and j. Defining ¢ as in the Transfer Theorem and using the
fact that det( XY') = (det X)(det Y) for the matrices X and Y over R, we obtain

det(AB) =det(¢X-¢Y) =detp( XY) = det( XY) = ¢((det X)(detY))
= (¢(det X))(¢(det Y)) = (det(¢X))(det(¢Y)) = (det A)(det B)

after several applications of the Transfer Theorem.

The techniques of the above proof will be repeated with minor modifications to prove the
theorems which follow. To save space and to relieve tedium, many of the details given above will
be omitted.

THEOREM 2 (Cayley-Hamilton). 4 € R, implies f,(A)= 0.

Proof. For any A €R,, let A = (A4} be the subring of R generated by the entries a;; of 4 and

let X = ( X) be the free subring of K = Q(X) generated by the n? transcendental entries x, ; of X.
Let ¢ be the canonical homomorphism from M(X, ¢) to M(A, ¢) given by the Transfer Theorem
satisfying ¢(x;;)=a;; for all i and j. Then

f1(A) =f,x(6X) = (ofx) (6 X) = d(fx (X)) =¢(0) =0

follows from the Transfer Theorem and the Cayley-Hamilton Theorem f,(X)=0 for matrices
over R.

THEOREM 3. If A is a square matrix over the commutative ring R, then
A(AdjA) =(det A)I=(AdjA)A.

Proof. Let A, X, and ¢ be as in the proof of Theorem 2. Then
X(AdjX)=(det X)I=(Adj X)X

holds for the matrix X over R, and so the images under ¢ of the above three expressions must also
be equal, i.e.,

A(AdjA) = (det A) = (Adj A) A.

So far, we have used the Transfer Theorem only to “transfer” a theorem that is well known for
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matrices over the real numbers to obtain the corresponding theorem for matrices over an arbitrary
commutative ring R. The next three theorems are interesting not only because they are less well
known than the preceding three, but also because even their proof for arbitrary matrices over the
field R of real numbers makes use of the transfer theorem. The first two of these will be proved by
obtaining the result for invertible matrices over R and then applying the transfer theorem to
obtain the corresponding results for any matrices over an arbitrary commutative ring R. In
particular, this establishes the results for singular matrices over the real numbers. (Note that this
approach could also have been taken for Theorem 1; indeed, such a proof would be the algebraic
equivalent of the continuity proof [5] that motivated this paper.)

THEOREM 4. Let A and B be n X n matrices over a commutative ring R. Then
Adj(AB) =(Adj B)(Adj 4).

Proof. Case 1. Assume 4 and B are invertible over R. Then
Adj(AB) = det(AB) -(AB) ' =(det A)(det BYB 4!
=(detB)B '-(det4)A~*=(AdjB)(Adj4).

Case 2. A,B€R,. Let X, Y, and ¢ be chosen as in the proof of Theorem 1. Since the
elements x,; of X are algebraically independent, det X can be considered as a polynomial in the
x;; with rational coefficients, and X is singular if and only if this polynomial is identically 0.
However, the substitution x;;=8;; (where §,; is the Kronecker delta defined by §;, =1 and
§,,=0if i+j) gives X=1 and det X =1, so the polynomial det X cannot be identically 0. Thus

X is an invertible matrix over R, and so is Y. Hence Adj(XY) = (Adj Y)(Adj X) by Case 1, and
the Transfer Theorem gives

Adj(4B) = ¢(Adj( XY)) = ¢((Adj Y)(Adj X)) = (Adj B)(Adj 4).
THEOREM 5. If A € R, then AdjA = p,(A) is a polynomial p, evaluated at A, where
2a() = (=) £,() —£,(0)] /2.
Proof. Case 1. Assume A is invertible over R. Then
Ap,(A4) = (=1)"" [ £u(4) = £,(0) - I] = (=1)"£,(0) - I =(det 4) - = A(Ad] 4)
implies that
pa(A4) =Adj4

upon left multiplication by 4~ 1.

Case 2. Let A, X, and ¢ be as in the proof of Theorem 2. Then X is invertible over R, so
Px(X)=Adj X. Recalling the definition of p,, it is clear from the Transfer Theorem that the
image under ¢ is p,(A)= Adj 4.

The last two theorems were first proved for invertible matrices over the field R of real numbers
and then “transferred” to matrices over arbitrary commutative rings. To carry out the transfers
we needed to know that the “transcendental matrices” X and Y are invertible. To prove our last
theorem, we will need a more subtle property of the matrices X and Y, namely, that their product
XY has distinct eigenvalues in the field C of complex numbers.

THEOREM 6. Let R be a commutative ring, let A be an m X n matrix over R, and let B be an
n X m matrix over R, where m < n. Then

faa(t) =1"""f,5(2).

Proof. Case 1. Let A and B be m X n and n X m matrices, respectively, over the field R of
real numbers such that AB has distinct nonzero eigenvalues A;,..., A, in the field C of complex
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numbers. If A is a nonzero eigenvalue of AB with eigenvector v, then ABv=Av implies
BA(Bv)=A(Bv) and A is an eigenvalue of BA, also. Thus, A,...,A,, are distinct nonzero
eigenvalues of BA. Hence the n X n matrix BA has rank m and nullity n—m, so 0 is an
(n—m)-fold eigenvalue of BA. Therefore,

foa()=t"""(t=N) - (1= N,) =t"""f(2).

Case 2. Let A and B be m X n and n X m matrices, respectively, over the commutative ring
R, and let X=(x;;) and Y=(y;;) be mXn and nXm matrices, respectively, with 2mn
algebraically independent entries x;;, y;; in R\ Q. The m X m matrix XY is invertible over the
reals, since its determinant is nonzero. This can be seen by considering det( XY) as a polynomial
in x;;, ;. The substitutions x,;=§;; and y;;=9,, give det(XY)=detI=1, showing that
det( XY') cannot be 0.

Moreover, XY has m distinct eigenvalues in C. This can be seen as follows: The discriminant
D(fxy) of fyy is a polynomial in the coefficients of f,, which are in turn polynomials in the
entries x;; and y;; of X and Y. (See [2] or [6] for a description of the discriminant of a polynomial
and its properties.) The matrix XY has a repeated eigenvalue if and only if the discriminant
D(fxy) is zero. However, considering D(fyy) as a polynomial in x;;, y;;, the substitutions
x;;=90;; and y;;=i-9§,; give XY =diag(1,2,..., m) with m distinct eigenvalues, showing that the
polynomial D( fyy) cannot be identically O.

Defining the transfer homomorphism ¢ more or less as in the proof of Theorem 1, we use Case
1 to obtain

Frx () =1"""fyy (1),

and hence, upon taking images under ¢,

fea(t) =t"""f(2).

As an algebraist, I was unhappy when years ago I first encountered the “continuity” proof that
det(AB) = (det A)(det B) given in [5], especially because the extension to singular 4 or B was so
easy to carry out algebraically. However, it did motivate me to look for an algebraic equivalent of
the continuity argument. My solution to this problem was improved by my exposure to the notion
of a “generic element” in [4] while taking a graduate seminar in Lie algebras. Prior to obtaining
these proofs, I had not seen Theorems 4-6 in the literature, but it was later pointed out to me that
Theorem 6 for matrices over a field can be found in [3]. All of these results are so easy and natural
that they probably appear somewhere in the literature. However, my interest was more in the
technique than in the specific results. Perhaps some teachers and students of linear algebra may
find some pleasure and utility in these ideas, just as I have.
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Tiling Deficient Boards with Trominoes

I-Ping Cau

RicHArRD JOHNSONBAUGH
DePaul University

Chicago, IL 60604

Suppose that we remove one square from an n X n board. A 7 X 7 board with a missing square
is shown in FIGURE 1. Can we tile the remaining squares with right trominoes? (A right tromino,

FIGURE 1

hereafter called simply a tromino, is an object made up of three squares as shown in FIGURE 2.) In
this paper, by a tiling of a figure, we mean an exact covering of the figure by trominoes without

b - -

FIGURE 2
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having any of the trominoes overlap each other or extend outside the figure. A tiling of the 7 X 7
board of FIGURE 1 is shown in FIGURE 3.

FIGURE 3

A tromino is a type of polyomino. Since polyominoes were introduced by Solomon W. Golomb
[2] in 1954, they have been a favorite topic in recreational mathematics. A polyomino of order k
consists of k squares joined at the edges. A tromino is a polyomino of order 3. Three squares in a
row form the only other type of polyomino of order 3. (No one has yet found a simple formula for
the number of polyominoes of order k.) Numerous combinatorial problems using polyominoes
have been devised (see [3]).

We will call a board with one square missing a deficient board. In order for a deficient n X n
board to be tiled by trominoes, 3 must divide n> — 1 or, equivalently, 3 must not divide ». It is a
surprising fact that, except for the case n =5, the condition 3 +n is necessary and sufficient for a
deficient board to have a tiling. Our proof gives an algorithm for constructing the tilings.

Before continuing to the next section, we invite the reader to find a tiling of a 7 X 7 board with
a different square removed than in FIGURE 1, and also to find a deficient 5 X 5 board which
cannot be tiled. (Some deficient 5 X 5 boards have tilings while others do not.)

Special cases

Golomb [2] gave a proof by induction that every deficient n X n board, where n is a power of
two, can be tiled. We reproduce this proof since we will need the specific cases n=2, 4, and 8.
(This proof also appears in Golomb [3] and Liu [4].) Later (Theorem 2) we will give another proof
of this result for n> 8.

PROPOSITION 1. Every deficient 2¥ X 2 board, k > 1, can be tiled.

Proof. The proof is by induction on k. The case k=1 is obvious.

Suppose we can tile a deficient 2% X 2% board. Consider a deficient 2! x 2¥*! board. Divide
the board into four 2% X 2¥ boards as shown in FIGURE 4. Rotate the board so that the missing
square is in the upper left quadrant. By the inductive assumption, the upper left 2% X 2% board can
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be tiled. Place one tromino T in the center, as shown in FIGURE 4, so that each square of T is in
each of the other quadrants. These quadrants can now be considered deficient 2% X 2% boards.
Again, by the inductive assumption, these boards can be tiled. We now have a tiling of the
2k+1 % 2k*1 poard.

2k+1

2k x 2k 2K % 2k

2k+1 T U g iy i upn— T U U I

2k x 2k 2k x 2k

FIGURE 4

Our next proposition deals with the 5 X 5 board.
PROPOSITION 2. A 5 X 5 board with one corner square removed can be tiled.

Proof. 1f we eliminate the top two rows and the two columns at the extreme left of FIGURE 3,
we obtain a tiling of the 5 X § board with one corner square removed.

An interesting fact, which we leave to the reader, is that if a square next to a corner square is
removed from a 5 X 5 board, the resulting board cannot be tiled.
A trivial but useful fact is our next proposition.

PROPOSITION 3. A (2i) X (3)) board, i, j > 1, can be tiled.
Proof. A (2i)X (3j) board can be tiled with the 2 X 3 configurations shown in FIGURE 5.

FIGURE 5

We also need to construct tilings for deficient 7 X 7 boards.

PROPOSITION 4. Every deficient 7 X 7 board can be tiled.
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Proof. Let us denote the square in row #, column j by (i, j). Then, by symmetry, we need only
consider 7 X 7 boards with squares (i, j) removed where i <j < 4. The solution when square (1,1)
is removed is shown in FIGURE 6. Not all trominoes of the tiling are shown. The 3 X 2 and 2 X 3

Deficient 5 X §

3x2

2X3

FIGURE 6

subboards have tilings by Proposition 3. The 5 X 5 subboard with the corner square removed has a
tiling by Proposition 2. Essentially the same figure gives tilings in case square (1,2) or (2,2) is
deleted.

FIGURE 7 gives a tiling in case square (1,3) is deleted. Essentially the same figure gives tilings in
case square (1,4), (2,3), (2,4), or (4,4) is deleted.

3x2 4x3

4x3 3x4

FIGURE 7
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FIGURE 3 gives a tiling in case square (3, 3) is deleted.
We leave the remaining case, where square (3,4) is deleted, to the reader.

General results
We are now ready to establish a general result for deficient square boards with odd side.
THEOREM 1. We can tile any deficient n X n board if n is odd, n> 5, and 3 + n.
Proof. The case n=" is given by Proposition 4.

The solution for n=11 is shown in FIGURE 8. We first rotate the board so that the missing

11

X 4
%7 6

11

——-

5%5
4X6

FIGURE §

square is located in the 7 X 7 subboard. By Proposition 4, this deficient 7 X 7 subboard can be
tiled. The 6 X 4 and 4 X 6 subboards can be tiled by Proposition 3. The 5 X 5 subboard with a
corner square missing can be tiled by Proposition 2.

We can now proceed by induction. Suppose that »n is odd, n> 11, 3 +n, and that deficient
k X k boards where k is odd, n> k> 5, and 3 t k can be tiled. FIGURE 9 shows a tiling of the
deficient n X n board. We first rotate the board so that the missing square is located in the
(n—6) X (n—6) subboard. Now n—6 is odd, n—6>5, and 3 +n— 6; so, by the inductive
assumption, this deficient (n — 6) X (n — 6) subboard can be tiled. Since » is odd, n — 7 is even;
thus, by Proposition 3, the 6 X (n—7) and (n — 7) X 6 subboards can be tiled. By Proposition 4,
the deficient 7 X 7 subboard can be tiled. We have tiled the n X n board.

Our final result deals with deficient square boards with even side. The proof is similar to the
proof for deficient square boards with odd side. ’

THEOREM 2. We can tile any deficient n X n board if n is even, n>1, and 3 + n.

Proof. The cases n=2, 4, and 8 are given by Proposition 1.

FI1GURE 10 shows a tiling of the deficient n X n board where n is even, n> 8, and 3 + n. We
first rotate the board so that the missing square is located in the (n — 3) X (n — 3) subboard. Since
n—31is odd, n—3>35, and 3+n— 3, we may use Theorem 1 to conclude that the deficient
(n—3)X(n—3) subboard can be tiled. By Proposition 3, the 3 X(n—4) and (n—4)X3
subboards can be tiled. By Proposition 1, the deficient 4 X 4 subboard can be tiled. We have tiled
the n X n board.
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(n—6)X(n—06) (n—T)X6
n
6x(n—"T1) X1
FIGURE 9
n
(n—4)x3
(n=3)X(n-73)
n
-
:
4x4
3X(n—4)
FIGURE 10

We conclude:

THEOREM 3. Ifn# 5, then a deficient n X n board can be tiled with trominoes if and only if 3 + n.

Related problems

Having classified the deficient square boards that can be tiled with trominoes, a number of

other questions can be raised. For example:

1. Which deficient rectangular boards can be tiled with trominoes?
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2. Which rectangular boards with k squares removed can be tiled with trominoes?

Proposition 3 showed that a (2i) X (3j) (nondeficient) board can be tiled with trominoes. We
can ask:

3. Which (nondeficient) rectangular boards can be tiled with trominoes?

A new set of problems results if we ask the preceding questions about some other kind of
polyomino. In this connection, de Bruijn [1] proved that if an n X m board is tiled by a X b
rectangular polyominoes, then either a divides n or a divides m. Actually, de Bruijn’s result was
valid in an arbitrary number of dimensions; we have stated only the two-dimensional case. Of
course, all of the above questions can be posed in an arbitrary number of dimensions.

Finally, once we have a tiling of a board, we can ask:

4. How many tilings of a particular type are there?

References
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Three Aspects of Fubini’s Theorem

J. CHris FisHER
University of Regina
Regina, Canada S4S 042

J. SHILLETO
6 Locksley Avenue, #5B
San Francisco, CA 94122

Which of the three propositions in the box—(1), (2) or (3)—would you consider to be the most
palpably true? Our first choice is (1), while (3) is second, and (2) is a close third. This is because

2
Let f(x,y), 3—13()6, y), and ﬁh(x, y) be continuous real-valued functions in the

rectangle {(x, y): a<x<b,c<y<d). Then:

@ fxfyf(u,u)dvdu=fyfxf(u:U)d“dvy
) a—i./;yg(x,v) dv:j;ya—ig(x,u)dv,

32 8?
G Fyax 1= gxg, h (% »).

the geometrical evidence for (1) provides a more compelling argument than the naturalness and
sense of order of (2) and (3). In fact, (3)’s interpretation using velocities actually detracts from its
believability (as we shall see)!

These statements are surprising in light of the fact that using only the fundamental theorem of
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calculus and some routine manipulations, any one of these propositions can be derived from any other.
Many of our observations can be found in [2], and some of the ideas are suggested by exercises
in [1, p. 793], [3, p. 61], and [4, pp. 464—465]. Nevertheless, they are missing from contemporary
calculus texts and deserve occasional airings. In addition to bringing [2] back to light, our goal
here is to emphasize the intuitive content of this circle of ideas.
Statement (1), a special case of Fubini’s theorem, can be interpreted as follows:

One gets just as much tomato to eat if he slices it from left to right or from back to front.
Compare this with the mental gymnastics required to untangle the interpretation of (3):

A person walks on a hillside and points a flashlight along a tangent to the hill; then the rate at
which the beam’s direction changes when walking south and pointing east equals its rate of
change when walking east and pointing south.

We leave the interpretation of (2) to the reader. (Hint: The left side of (2) is the rate of change of
the cross-sectional area of the tomato slices mentioned above. Does your interpretation of (2)
convince you of its validity?)

Proofs that the statement (i) implies (i + 1) are readily found in textbooks (or see [2]). As a
typical example, here is the standard proof that (1) implies (2). We assume (1) and define

f(x,y)= 5 8(x, y). That is,
[ #u.y) du=g(x,») ~g(a,y).

Then

,_\

f ff(u v) du+g(a, v)) dv
axfcf fQu,v) dudv+ 5 4 fg(a v) dv.

Since f g(a,v) dv is a function of y only, its partial derivative with respect to x is zero, and

(havingcassumed 1)

%fcyg(x,v) dv=a—i_£xfcyf(“,v) dv du

=fyf(x,v) dv
= fcy%g(x,v) dv.

The proof’s only nontrivial steps use the fundamental theorem of calculus. Indeed, one rather
undesirable feature of this proof is that the details make it seem as if something more is involved.
Let us therefore change our notation to one of operators to bring out the essence of the above
argument. Define

3f

Df= D= [, y) du

f

D f= ¥’ and Dy_1f==fyf(x, v) dv.
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In this notation, statements (1), (2), (3) become

-1p-1_ p-1p-1
(1) D, lDy 1—Dy D,
(2) D, Dy‘1 = Dy‘le s
and
(3) D,D,=D,D,.

The fundamental theorem of calculus for f=f(z) is essentially D,D; 'f= D, 'D,f=f, where
“essentially” means that D, D, f should have a constant of integration. Of course, in the present
context that constant eventually disappears (much as it did in the detailed proof), a fact that can
conveniently be left as an exercise. With this warning, the proof that (1) implies (2) now reads

-1 _ -1({ p-1 — -1p-1 — n-1
D.D;' = D.D; (D; Dx)(l)Dx(Dx D )DXF.T.Dy D,

Here is (2) implies (3):
DD DnyDle DDlDD DD

The proofs that (3) implies (2) and (2) 1mp11es (1) can be obtained by interchanging D with
D! in the lines above.

We should emphasize that because D~ 'Df differs from f by a constant, the above argument
does not constitute a rigorous proof that (i) implies (i — 1). It is, however, an amusing exercise to
decode such a symbolic argument to check that each constant of integration really does disappear.
Here, for example, is a proof that (3) implies (2) (by decoding D, p = =D, D, D, Dy‘1 =
D;'D,D,D; "} = D,D;Y):

v d (3 (v
j;ﬁg(x,v) dvF=Tf m(%fg(x,t) dt) dv

v d 3 (v
5 %Efg(x,t)dtdv

= 3xf g(x,t) di — f g(x,t) dr
=(%fcg(x,v) dv.

The ideas touched upon in this note seem to be appropriate for any calculus course, rigorous or
not. At one level they provide an attractive way of proving (3): merely explain how it follows
quickly from (1). At any level they provide the opportunity to stress normally unseen connections
while providing one more chance to show (and show off) the power of the fundamental theorem
of calculus.

Note finally that one can easily avoid the intermediate proposition (2), since (3) follows directly
from (1):

p,D,=D,D,(D;'D;')D,D,=D,D,(D;'D; ') D,D,=D,D,.
We would like to thank Jerry Marsden and John Wilker for their helpful comments and references.
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Proposals

To be considered for publication, solutions
should be received by July 1, 1986.

1231. Proposed by Martin Feuerman, New Jersey Medical College, Newark.
Let 4 be a ¢ Xt real symmetric matrix of rank ¢—1 such that A1 =0, where 1 is the r X1
vector with each element equal to 1, and let
«_|4 1]
-[i ol
(The prime denotes transpose.) Prove that 4* is nonsingular.

1232. Proposed by J. T. Groenman, Arnhem, and D. J. Smeenk, Zaltbommel, The Netherlands.

Let / be the Euler line of the nonisosceles triangle ABC (with sides a, b, ¢ and angles a, 8, v),
and let d be the internal angle bisector of y. (The Euler line of a triangle contains the centroid,
circumcenter, and orthocenter.) Prove that:

(a) [ is perpendicular to d if and only if y=7/3; and

(b) [ is parallel to d if and only if y=2x/3.

1233. Proposed by Robert E. Shafer, Berkeley, California.
Prove that if x> —1 and x # 0, then

x? x?
= <log?(1+x) < =
2 = ) X
WU SR NIE . -
A
I+ x+5z5x l+x+55

ASSISTANT EDITORS: CLIFTON CORZATT and THEODORE VESSEY, St. Olaf College. We invite readers to submit
problems believed to be new and appealing to students and teachers of advanced undergraduate mathematics. Proposals
should be accompanied by solutions, if at all possible, and by any other information that will assist the editors and
referees. A problem submitted as a Quickie should have an unexpected, succinct solution. An asterisk (*) next to a
problem number indicates that neither the proposer nor the editors supplied a solution.

Solutions should be written in a style appropriate for Mathematics Magazine. Each solution should begin on a
separate sheet containing the solver’s name and full address.

Solutions and new proposals should be mailed in duplicate to Loren C. Larson, Department of Mathematics, St. Olaf
College, Northfield, MN 55057.
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1234. Proposed by the Computer Science Problem Seminar, Stanford University.

A positive integer is said to be “sorted” if the digits in its decimal notation are nondecreasing
from left to right.

(a) Let x be any integer whose decimal notation consists of an arbitrary number of 3’s
followed by an arbitrary number of 6’s followed by a single 7. Prove that x? is sorted. For
example, 333666672 = 1113334466688889.

(b)* Which positive integers x are such that both x and x? are sorted?

1235. Proposed by Ira Rosenholtz, The University of Wyoming.

The book Calculus in Vector Spaces by Lawrence J. Corwin and Robert H. Szczarba contains
the following in its discussion of local extrema for functions of several variables.

“Suppose f has local maxima at v; and v,. Then f must have another critical point, v;,
because it is impossible to have two mountains without some sort of valley in between. The other
critical point can be a saddle point (a pass between the mountains) or a local minimum (a true
valley).”

(a) Show that the impossible is possible.

(b)* Is the impossible possible for polynomials?

[For related material see three articles in the May, 1985, issue of this MAGAZINE, pp. 146-150,
as well as the article by Calvert and Vamanamurthy in J. Austral. Math. Soc., ser. A, v. 29 (1980)
362-368.]

1236. Proposed by Mihaly Bencze, Sacele, Romania.
Let the functions f and g be defined by

72x
27?4 8x?

8x
f(x)= and g(x)_47r+7rx2 for all real x.

(a) Prove that if A, B, and C are the angles of an acute-angled triangle, and R is its
circumradius, then

F(A)+1(B) +£(C) <2EDTE < g(4) +5(B) +5(C). (1)

(b)* Determine functions f and g, where f(x) and g(x) have the form x/(u + vx?), with u
and v real constants, for which the inequalities in (1) are best possible.

Quickies

Answers to the Quickies are on pages 53- 54.

Q704. Submitted by M. S. Klamkin, University of Alberta.
Determine the maximum value of

cos?ZPOA + cos®> ZPOB + cos*> 2POC + cos* ZPOD,
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where ABCD is a face of a cube inscribed in a sphere with center O, and P is any point on the
sphere.

Q705. Submitted by John P. Hoyt, Lancaster, Pennsylvania.
In the accompanying figure, AB = 87, BC =105, CD = 116, and radius OC = 72.5. Find AD.

Q706. Submitted by Bill Olk, student, Carroll College.
Suppose that the function f is continuous on the interval [a, b}, is differentiable on («, b), and
vanishes at a and b. Show that for every real number r, there is a point ¢ in (a, b) such that

fe)y=r(f(e).

Q707. Submitted by Zhang Zai-ming, Yuxi Teachers’ College, Yuxi, Yunan, China.

Let the perpendicular bisectors of the sides BC, CA, and AB of triangle ABC intersect the
circumcircle of ABC in the points 4’, B’, and C’, respectively, so that A’ is on the arc BC not
containing A4, and similarly for B’ and C’. Continue the process by constructing triangle A”B"”C”
from A’B’C’ in the same way, and so on. Show that the angles of triangle 4B C approach
7/3 as n— oo.
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Solutions

Sum of Inradii of a Dissected Triangle January 1985
1206. Proposed by Hiseyin Demir, Middle East Technical University, Ankara, Turkey.

Let ABC be a triangle with sides a, b, and ¢ and semiperimeter s. Let the side BC be
subdivided using the points B= P, P,,..., P,_;, P,= C in order. If r, is the inradius of triangle

A
B=P, aji_y P a; P, P,=C
FIGURE 1
AP,_,P, for i=1,...,n, prove that
1 K
n+ -4, <§haln?—_—a,

where h, is the length of the altitude from vertex A.

Solution by Vania D. Mascioni, student, ETH Ziirich, Switzerland.
For i=1,2,...,n let g, be the base P,_, P, and s, the semiperimeter of triangle AP,_, P;, and
let a; and s/ be the corresponding quantities for triangle 4 BP,. We show below that

sl_,—al_, s;—a; s/ —al i

i—1 zl'z i _ 2 i forZSISn. 1
7 ’ = =

Si—1 S; i

An easy induction yields

n
s—a _ 1—[ $; —a;
S =1 S
From the arithmetic-geometric mean inequality and the fact that 7.5, = 3a,h, we obtain

s—a\l/n 1 “ §;—a; 1 z a; 2 -
(%) ;El —Z(1-;)-1—Wai§1n~,

N S; n i=1 i

IIA
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so that

“ nha s—a\l/n
which is stronger than the proposed inequality, which follows if we use 1 —1/x <Ilnx for x> 1
with x:=(s/(s — a))/".

Proof of (1). To simplify notation, the sides of triangles ABP;_; and AP,_, P, are relabeled as
shown in FIGURE 2. Then (1) becomes

FIGURE 2. Stewart’s theorem.

utv—p v+tw—q _utw—p-—gq
utv+p v+w+q ut+twt+ptg’

and an easy (though boring) algebraic manipulation shows this is equivalent to
(*+p*—u?)g+(v*+¢*—w?)p=0.
Now by the law of cosines, this is equivalent to
2pqv(cos £AP,_ B+ cos£ZAP,_P;) =0,
which is obvious, since ZAP,_;B+ ZAP,_,P,=a. Cf. also Stewart’s theorem, in Coxeter and
Greitzer, Geometry Revisited, p. 6.

Also solved by Jordi Dou (Spain), Vaclav Konelny & Ronald Shepler, L. Kuipers (Switzerland), Syrous Marivani,
William A. Newcomb, Bjorn Poonen (student), J. M. Stark, Paul J. Zwier, and the proposer.

Most solvers used an estimate like

Zr<2r—2 ha (5~ xj-1) zf”“ hy dx

ot Six-x 1+‘/( 1)2+(h,,)2+\/(xj’~)2+(ha) zx +h2
where 4 =(0,4,), B=(z,0), C=(z+a,0), P/=(x},0), [F,..., ;] is a strict refinement of the partition
[Pys..., P,]of BC (i, each P isa P/, and m> n), and r/ is the inradius of triangle AP/_ P/.
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A Generalized Weakened Goldbach Theorem January 1985
1207. Proposed by Barry Powell, Kirkland, Washington.

Prove that for each positive integer K there exist infinitely many even positive integers which
can be written in more than K ways as the sum of two odd primes.

1. Solution by Michael V. Finn, Annandale, Virginia.

Let P be the set of odd primes, and let a; be the number of ways in which 2i can be written as
the sum of two elements of P. Suppose that the sequence (a,)?; has an upper bound M. Then
for every x € (0,1) we have

(Z ) Zax2’<MZx sz

PEP i=2 x

Hence

I
PEP pEP x

Then, since a power series can be integrated term by term within its interval of convergence, we
have

1 x

Z ==Y [xtldx= pr_ldxg\/ﬁ ———dx=YM.
PEP P pePf f '/(; V1-— x?

But it is known that X, . »(1/p) is unbounded, so we arrive at a contradiction. Hence for every

M, some a; exceeds M.

II. Solution by John A. Frohliger, St. Norbert College.

Since every odd integer can be written as the sum of two primes in at most two ways, the
problem is equivalent to the following:

For every positive integer K there exist infinitely many positive integers which can be written
in more than K ways as the sum of two primes, where the sums a + b and b+ a are considered
distinct if a # b.

Proof. Suppose that only finitely many integers can be written as the sum of two primes in
more than K ways, and that N is the largest of these integers. Since N can be written as the sum
of two positive integers in N — 1 ways, no integer can be written as the sum of two primes in N or
more ways. Let n be a positive integer and «(n) the number of primes not exceeding n. Then
(m(n))? is the number of sums of two primes, neither exceeding #. Since no such sum exceeds 2n
and no integer not exceeding 2n can be written as such a sum in N or more ways, we see that

(= ( n))2 <2nN.

Hence

(W(n)lo’%n) 2Nlog n

Now let n — 0. By the prime number theorem, the left side approaches 1, while the right side
clearly approaches 0. Hence

10,
which provides the desired contradiction.

Also solved by Andreas Miiller (student, Switzerland), William A. Newcomb, Bjorn Poonen (student), Daniel A.
Rawsthorne, William Staton, and the proposer.
Most solvers used the prime number theorem, although the weaker estimate #(x) > ax/log x with, say, a=1,
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due to Chebyshev and used by the proposer, is sufficient. Rawsthorne proved a generalization: let R(n) be the
number of representations of n as the sum of two primes. If 0 < e <1 /4, then there are infinitely many even integers
n with R(n) > (1/4 — e)n/log*(n/2).

A Two-Term Product Inequality January 1985

1208. Proposed by Mihaly Bencze, Sacele, Romania.
Prove that if @ and b are positive, then

n
l_[ (ak + bk)l > (an+1 + bn+1)"'
k=1

Composite of nearly identical, independent solutions by: Victor Hernandez, Universidad Autonoma
de Madrid, Spain; Padmini T. Joshi, Ball State University; Michael M. Parmenter, Memorial
University of Newfoundland, Canada; Richard E. Pfiefer, San Jose State University; Bjorn Poonen,
student, Winchester, Massachusetts; Jan Soderkvist, student, Stockholm, Sweden; and Carl
Wagner, University of Tennessee.

H (ak +bk)2= H (ak +bk) 1—[ (an+1—k+bn+l—k)
k=1 k=1 k=1

k

> lﬁl (an+1+bn+1)=(an+1+bn+1)".
k=1

n

(an+1 +akbn+1—k +an+1—kbk +bn+l)
1

Note that inequality is strict.

Also solved by Beno Arbel (Israel), David Boduch (student), Pedro Celis (Canada), Crist Dixon, Sheldon
Degenhardt (student), Michael V. Finn, David C. Flaspohler, Riad Ghibril (student, Lebanon), Chico Problem
Group, Gymnasium Bern-Kirchenfeld Problem Solving Group (12 students, Switzerland), Hans Kappus (Switzerland),
M. S. Klamkin (Canada), Vaclav Konelny & Ronald Shepler, L. Kuipers (Switzerland), Eugene Levine, J. C.
Linders (The Netherlands), Peter W. Lindstrom, Beatriz Margolis (France), Syrous Marivani, Vania Mascioni
(student, Switzerland), Mike Molloy (student, Canada), Andreas Miiller (student, Switzerland), Roger B. Nelsen,
William A. Newcomb, Richard Orr, David Paget (Australia), Richard Parris, Kostas A. Petrakos, Daniel A.
Rawsthorne, Joseph Sardinha, Jr., Volkhard Schindler ( East Germany), Shannon Schumann (student), Michiel Smid
(student, The Netherlands), J. M. Stark, B. Viswanathan (Canada), Michael Vowe (Switzerland), J. G. Wendel,
Wong Ngai Ying (Hong Kong), Yan-Loi Wong (student), and the proposer. There was one incorrect solution. Late
solution by Erhard Braune (Austria).

A Definite Integral January 1985
1209. Proposed by Themistocles M. Rassias, Athens, Greece.
Evaluate
[Vxlosx
o (1+x)

1. Solution by Victor Hernandez, Universidad Auténoma de Madrid, Spain.
Use integration by parts, with u = y/x log x and dv = (1 + x)~2 dx, so that

wyxlogx 1= logx . (® dx
L v @2k mais @l wma

Now, letting y = 1/x, we have
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fl _logx /°°_ log y
A+n) haen ?
and both improper integrals exist. Hence

_ logx

f \/—(1+x) =0,

from which it follows that

\/—logx I et dx
'/(1+x) _fo Vx(1+x)

II. Solution by William A. Newcomb, Lawrence Livermore National Laboratory.

A generalization is proved. Draw a cut in the complex plane from 0 to oo along the positive
real axis, and define the range of 6 to be from 0 to 2« in the formulas z = re’’ (with r> 0),
log z=1log r+i6, and Vz =Vre®/?. Let F be any rational function having no poles on the
positive real axis and satisfying the further conditions

=[2Arctanyx ]2, = .

F(z) isreal for positive real z,
F(z)=0(r?)asr— o0, and

F(z)=0(r ') asr—0.
Let G(z) = F(z)Vz log z. We apply the residue theorem to [~G(z) dz around the closed contour
C consisting of: the segment C; from & to R (where 0 < ¢ < R) along the upper edge of the cut;
the circle C, of radius R centered at the origin and traversed in the positive or counterclockwise
sense; the segment C; from R to ¢ along the lower edge of the cut; and the circle C, of radius ¢

centered at the origin and traversed in the negative sense. Let the poles z, of G have the
respective residues p,. Now

L G(z) dz +fc G(z2) dz=feRF(x)\/;(logx) a’x+j§F(x)(—ﬁ)(logx+ 2mi) dx
= ZfRF(x)\/;(log x) dx + 27TifRF(X)\/; dx,
fc G(z) dz=0(27R-R ?-VR(log R+ 27)) = O(R"*/*log R) as R — o0,

and

. G(2) dz=0(2me- & Ve (llog ¢+ 27)) = O(&/*log e]) as e 0.
Cy

Hence by passage to the limit as R — oo and & — 0 and use of the residue theorem we obtain
2/0°°F(x)¢§(1og x) dx + 2mf0°°p(x)¢; dx = 27ri§pk.
Hence
fowF(x)\/; dx =.Zk:Re P
and

waF(x)\/;(log x) dx= —wzk:Im k-

In particular, for F(z)=(1+z)~? we have
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Res(G,—1)=[;;£Z(\/z_logz)] 1=%—i,

7= —

and so

[l g

T
— = dx=.
(1+x)? (1+x)° 2

Also solved by Nicolas Artemiadis (Greece), David Boduch (student), W. M. Causey, L. Matthew Christophe, Jr.
(two solutions), John M. Coker, Roger Cuculiére ( France), Sheldon Degenhardt (student), Peter F. Ehlers (Canada),
Irwin K. Feinstein, Edward Gade, 3rd, Ralph Garfield, Raymond Greenwell, Chico Problem Group, Hans Kappus
(Switzerland), Panos Karambelas (student), M. S. Klamkin (Canada), L. Kuipers (Switzerland), Kee-wai Lau
(Hong Kong), Randall Leigh, Robert Leslie, Peter Lindstrom, Beatriz Margolis (France), Syrous Marivani, Fran
Masat, Vania Mascioni (student, Switzerland), Roger B. Nelsen (three solutions), Richard Parris, Kostas A.
Petrakos, Bjorn Poonen (student), Wulf D. Rehder (three solutions), Volkhard Schindler ( East Germany), Robert E.
Shafer, Michiel Smid (student, The Netherlands), M. R. Spiegel (two solutions), J. M. Stark, John S. Sumner,
Michael Vowe (Switzerland), Edward T. H. Wang (Canada, two solutions), Harry Weingarten, M. G. Wurtele, Paul
J. Zwier, and the proposer.

The solutions submitted were of five main types: elementary evaluation using various substitutions; use of the
gamma or beta function; use of contour integrals; use of infinite series; and table look-up, principally in Gradshteyn
& Ryzhik, formula 4.252.4. The problem occurs, or can be reduced to one occurring, in several well-known
textbooks. For example, Nelsen found it in Churchill et al., Complex Variables and Applications, fourth edition, p.
183, problem 9 (set x = ¢~ 2). Evaluations of several related or more general integrals were submitted, among them
the following:

2 3
fw&Lg)? dx = % (R. E. Shafer);
0 (1+x)
n-2
© xPlogx  _ (n=2-p
-[0 ———(1 ) dx w( pe1l )(wcot(pvr) + jgo =7 cse( p)
ifo<p<1, n>2, and n is an integer (M. R. Spiegel).
Rational Polynomials and Roots of Unity January 1985

1210. Proposed by J. Rosenblatt, The Ohio State University.

For a fixed integer n > 3, consider the polynomials f(x) with rational coefficients and degree
less than n such that | f(w)| =1 whenever w is an nth root of unity. Must there be infinitely
many such polynomials f(x)?

Solution by Daniel B. Shapiro, The Ohio State University.
The answer is YES. Let Q be the field of rational numbers and { any primitive nth root of
unity, such as exp(2#7i/n). The result is a consequence of the following Claim.

CrLaM. Let n be 4 or an odd prime. Then there are infinitely many f(x) € Q[x] with deg f<n
such that [f({)|=1and f1)=1 (and f(—1)=1if n=4).

The Claim will settle the question in these special cases. For suppose that w is an nth root of
unity and that f is one of the functions whose existence is guaranteed by the Claim. If w =1 (or
w= —1 when n = 4), then clearly | f(w) | =1. If w# £1, then Galois theory implies that & = {°
for some automorphism ¢ of Q(¢). Since complex conjugation commutes with every automor-
phism of Q({), it follows that |a°|=|a| for every a€ Q({). Therefore, | f(w)|=|/({")]
=|(/(EN°| =1/ =1 .

Now any given 7> 3 has a divisor d which is either 4 or an odd prime. From the preceding
argument we know that there are infinitely many polynomials g(x) € Q[x] with deg g <d and
with |g(p)| =1 whenever p is a dth root of unity. For any such g(x) we define f(x) to be
g(x"/%). Then degf<n and |f(w)|=1 whenever w is an nth root of unity. Furthermore,

VOL. 59, NO. 1, FEBRUARY 1986 51


http://www.jstor.org/page/info/about/policies/terms.jsp

distinct g’s provide distinct f’s. Hence the problem is solved once we have established the Claim.

To prove the Claim, we first note that there are infinitely many « € Q({) with aa =1, e.g.,
a=(r+8)/(r+=+8)/(r+1/¢) with r€ Q. It is easy to see that distinct r’s provide
distinct a’s. We now construct for each a a polynomial f(x) € Q[x] satisfying the conclusions of
the Claim, with distinct a’s providing distinct polynomials. If » is an odd prime, it suffices to take
f(x)=co+ex+ - 4c, ,x" P+all+x+ -+ +x"71), where ¢y + e+ -+, 8"
with ¢; € Q is the unique representation of « in the Q-basis {1,¢,...,{ "=21of Q({), and a € Qs
chosen suitably. Since f({) = a, the condition f(1)=1 forces a=(1—co—¢; — -+ —c,_,)/n€E
Q. If n = 4, it suffices to take f(x) =cy + c;x + a(l + x + x? + x3) + b(1 + x?), where a = ¢, + ¢,
with unique ¢; € Q and suitable a and b in Q. Since f(i)=a, the conditions f(1)=f(-1)=1
force a= —c¢;/2€Qand b= (1 - ¢, + ¢;)/2 € Q. Thus every one of the infinitely many choices
of a determines a suitable polynomial, which proves the Claim.

It may be noted that the result is false if n < 2, since there are only two constant polynomials
f(x) with f(1) = +1, and only four linear polynomials f(x) with f(+1)= +1.

There was one incorrect solution.

Comments
966 (proposed January 1976; partial solution May 1977).

No solution was published for part (iii), which was to determine if it is possible to find a square and an interior point
such that the distances from the interior point to the vertices and to the sides are all integers. John P. Robertson
(Berkeley, California) has proved that there is no such square if it is required that two of the distances from the point
to the sides be equal.

1094 (proposed March 1980; solution May 1981).
Late solution by Lee A. Hagglund (lost in editor’s files).
1154 (proposed November 1982; solution January 1984).

The late Henry E. Fettis (Mountain View, California) provided a generalization, replacing the positive integer n by
an arbitrary positive real number p. Let

Re= L (7

k+1

Then d(xF'(x))/dx= (1 —x)?~!, and integration and substitution yield

r=3 [ Ly o),

where Y(z)=T"(z)/T'(z) and C is Euler’s constant.

Q677 (November 1982).
Benny N. Cheng (student, University of California, Berkeley) gives a direct proof. Let P be a polynomial of degree

n =2 with real coefficients: P(x)=ax"+bx""1+cx""2+ .-, If (n—1)b? < 2nac, then P has at most n— 2
real zeros. For suppose that P has n real zeros (it cannot have » — 1). We may assume without loss of generality
that « =1. Let ay,..., &, denote the (real) zeros of P. Then b= —X,a; and ¢ =X, . ;a;;. Hence
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(n—l)bzg2nc=>(n—1)(2a,-) >2n2aa :n((Zai) -2Y « 1)“(;%)2@”;0‘1‘2;(;%)2’

i i<j i i<j

which is nothing but the Cauchy-Schwarz inequality. Hence if P has n real zeros, then (n — 1)b? = 2nac, and the
contrapositive follows.
Q677 is a generalization of Q626 (September 1975).

Answers

Solutions to the Quickies on pages 44-45.

A704. We choose a rectangular coordinate system so that the direction cosines of OA, OB, OC,
and OD are (L A 71_— , \/l ). Let the direction cosines of OP be (u, v, w). Then
4
cos’ZP0A = ( ) = (constant).

A705. Rearrange the sides of the quadrilateral as shown in the accompanying figure. The triangle
whose sides are 87, 116, and 145, i.e., 3 X 29, 4 X 29, and 5 X 29, is a right triangle. Therefore the
triangle whose sides are x, 105, and 145, i.e., x, 21 X 5, and 29 X 5, is a right triangle, and
x=20Xx5=100.
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Note. In the given quadrilateral, the diagonals had lengths of 143 and 144, the diagonals were
perpendicular, and the area of the quadrilateral was 10296. In the rearranged quadrilateral, the
diagonals have lengths of 143 and 145, the diagonals are not perpendicular, and the area is 10296.

A706. Let g be an antiderivative of f and set h(x)=e ") f(x) for all x in [a, b]. Then h
satisfies the hypotheses of Rolle’s theorem on [a, b]. Hence there is a ¢ in (a, b) such that
h'(c)= —rg'(c)e 8Of(c)+e "8 f'(c) = 0. Dividing out the nonzero exponentials and noting
that g’(¢) = f(c) yields the desired result.

A707. From the figure we see that 4’=1(B + C)= (7 — A). By induction we obtain 4" =
a7 —%+ - —(— 1"+ (- 3)"4, which approaches 7/3 as n — oo, and similarly for B¢ and
co,

Ed. note. Several similar problems have appeared in the literature. In this MAGAZINE, problem 913 (v. 48 (1975)
246-247), A’ is the intersection of the circumcircle with the median from A; in the MONTHLY, problem E2906 (v. 90
(1983) 338), A’ is the intersection of the circumcircle with the angle bisector from A; in the MONTHLY, problem
E1223 (v. 64 (1957) 274-275), and in Crux Mathematicorum, problem 554 (v. 7 (1981) 184-185 and v. 10 (1984)
197-198), A’ is the point of tangency of the incircle with BC.
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REVIEWD

PauL J. CameseLL, Editor
Beloit College

Assistant FEditor: Eric S. Rosenthal, West Orange, NJ. Articles and books are
selected for this section to call attention to interesting mathematical exposi-
tion that occurs outside the mainstream of the mathematics literature. Readers
are invited to suggest items for review to the editors.

Albers, Donald J., et al. (eds.), New Directions in Two-Year College Mathematics:
Proceedings of the Sloan Foundation Conference on Two-Year College Mathematics,
Springer-Verlag, 1985; xx + 491 pp, $24.

Report on the first national conference on mathematics education in two-year
colleges. Most of the excellent essays and discussions are of new curricula

and new tools and are of interest also to faculty at four-year colleges and
universities.

Weeks, Jeffrey R., The Shape of Space: How to Visualize Surfaces and Three-
Dimensional Manifolds, Dekker, 1985; x + 324 pp, $49.75.

What is the shape of space? This splendid book, which has no prerequisites
except curiosity, treats the connections between topology, geometry, and cos-
mology. A wealth of illustrations, a minimum of notation, a little fantasy
(3 la Flatland), and lots of thought-provoking exercises make the book
superbly stimulating. Even among professional mathematicians, few will fail
to learn something new about geometries on 3-manifolds. Too bad about the
price; authors of books like this one would serve potential readers better

by striving for more inexpensive publication (e.g., in an MAA series).

Brancazio, Peter J., Sport Science: Physical Laws and Optimum Performance,
Simon & Schuster, 1985; 400 pp, $9.95 (P).

Why should you string your tennis racket at 50 rather than 70 1bs.? or launch
a basketball at the minimum-effort angle? There's less mathematics here than
physics--in fact, the mathematics of the optimization is kept hidden, with
only the results displayed in tables. Still, it's enjoyable to see how far a
few simple mathematical models can go.

Honsberger, Ross, Mathematical Gems III, MAA, 1985; 250 pp, $27 ($21 to members).

This additional collection of capsules--whose technical demands seldom go
beyond college freshman mathematics--is mostly dedicated to problems from
discrete mathematics. The sole remaining problem is to get a book like this

into the hands of each freshman interested in mathematics; once read, it will
work its charm.

Stewart, Ian, The power of positive thinking, Nature 315 (13 June 1985) 539.

Relates recent progress by C. N. Delzell on Hilbert's 17th problem, on the
representation of positive functions as sums of squares.
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McMahon, Thomas A., and Bonner, John Tyler, On Size and Life, Scientific Ameri-
can, 1983; xiii + 255 pp.

An engineer and a biologist team to write for the general reader one of the
most enjoyable natural history books of the decade. With hundreds of photo-
graphs, figures, and graphs, they illustrate--in both qualitative and quan-
titative terms--the consequences of different sizes, for the physiology,
embryology, support structure, locomotion, and evolution of organisms. The
fundamental concepts of similarity and allometric growth are investigated
using log-log plots; even high-school students can enjoy this book.

Halmos, Paul R., I Want to Be a Mathematician: An Automathography, Springer-
Verlag, 1985; xv + 421 pp, $41.50.

What's it like to become and be a research mathematician? Not bad, Paul
Halmos might conclude. Would-be mathematicians will get some idea of what
it's like; current practitioners are bound to find an anecdote about someone
they've heard of or met. This congeries wanders in enjoyable fashion, alter-
nately opinionated, interesting, judgmental, and inspiring. True to the
neologism of the title, Halmos sticks to the mathematical side of his life;
for example, one learns of his marriages only through accidental references.
Non-mathematicians may get the wrong impression, that mathematicians' lives
are as narrow as popularly suspected; in any case, Halmos is writing less for
them than for his colleagues and successors.

Mackiw, George, Applications of Abstract Algebra, Wiley, 1985; v + 184 pp,
$11.95 (P). '

Provides a supplement on applications for a class studying groups, rings, and
fields. Included are exact computing, error-correcting codes, block designs,
crystallography, integer programming, cryptography, and combinatorics.

Moore, David S., Statistics: Concepts and Controversies, 2nd ed., Freeman,
1985; xvii + 350 pp, $19.95, $12.95 (P).

Second edition of an outstanding statistics book for readers interested in
ideas rather than technique. Changes include updating data and topical exam-
ples, adding fresh non-numerical exercises, and providing some added material.

Hofstadter, Douglas R., Metamagical Themas: Questing for the Essence of Mind
and Pattern; An Interlocked Collection of Literary, Seientific, and Artistic
Studies, Basic Books, 1985; xxviii + 852 pp, $24.95.

Admirers of Hofstadter's former column in Seientific American will be over-
joyed at this volume, which contains all of those 25-1/2 columns, plus further
comments and eight additional essays. ' Those who know him only from Gddel,
Escher, Bach: An Eternal Golden Braid--or worse yet, not at all!--should
prepare for an extended treat by the master of self-reference, pattern, and
perception. His cleverness wanders "all over the intellectual map--from
sexism to music to art to nonsense, from game theory to artificial intelli-
gence to molecular biology to the Cube."

Abraham, Ralph H., and Shaw, Christopher D., Dynamics--The Geometry of Behavior:
Part 3: Global Behavior, Aerial Pr, 1985; xi + 123 pp, $26 (P).

Continues the authors' Visual Mathematics Library, in which mathematical con-
cepts are presented without algebra or equations. This volume treats generic
properties of dynamical systems, structural stability, heteroclinic and homo-
clinic tangles, and nontrivial recurrence.

Day, Lucille, The higher math, California Monthly (June-July 1985) 15-17 + cover.

Story on the mathematics research center in Berkeley, California.
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Cleveland, William S., The Elements of Graphing Data, Wadsworth, 1985; xii +
323 pp, $27.95, $18.95 (P).

Practical hints on how to graph data for best effect, a how-to manual to
accompany E. R. Tufte's The Visual Display of Quantitative Information
(1983). Cleveland draws most of his examples from illustrations in Science,
where 307 of the graphs give cause for discussion and improvement.

Brancazio, Peter J., The physics of kicking a football, The Physics Teacher
23:7 (October 1985) 403-407.

Constructs a model "of the trajectory of a football kick, using the laws of
projectile motion and basic aerodynamics. This model is able to determine
within a fairly narrow range the launching angles used for kickoffs and

punts." The editors note: '"The author gave up his Sunday afternoons and
Monday nights for several months in order to obtain the data for this article.”

Stewart, Ian, The duellist and the monster, Nature 317 (5 September 1985) 12-13.

Emmy Noether first asked which groups can occur as Galois groups of equations.
Now it is known that the "monster" group--which rose to fame as the largest

of the sporadic simple groups--is a Galois group. The proof by J. G. Thompson
makes heavy use of the function theory of fuchsian groups.

Stewart, Ian, The Bieberbach gambit, Nature 316 (18 July 1985) 213-214.

An account of de Branges's proof of the Bieberbach conjecture, with more
details of the mathematics than one finds in other popular versions. The
reasons? The author is a mathematician, 'and the editors were willing to
tolerate a little notation and some terminology.

Allman, William F., Staying alive in the 20th century, Science 85 6:8 (1985) 30-41.

"Our inability to cope with probabilities, says [Amos] Tversky, makes certain-
ty appealing.... The result is that low probabilities seem greater than they
are and high probabilities seem less.... Most people overestimated the num-
bers of deaths from causes that were sensational and underestimated more com-
mon causes of death that were less dramatic.'" Data are given on all kinds of
risks.

MacHale, Desmond, George Boole: His Life and Work, Boole Press Ltd., 1985;
xiii + 304 pp.

First full-length biography of George Boole (1815-1864). More than just a
mathematical genius, he was a '"child prodigy, self-taught linguist, turbulent
academic, social reformer, poet, psychologist, humanitarian and lover of ani-
mals--truly a nineteenth-century polymath." Still a mystery, though, is why
Boole at Cork and Hamilton at Dublin had almost nothing to do with each other.

Golub, Gene H., Studies in Numerical Analysis, MAA, 1984; x + 415 pp, $42 ($31
to members).

The ten contributions range over current areas of research in numerical anal-
ysis, including Newton's method, sparse matrices, conjugate gradient methods,
and multigrid methods. J. H. Wilkinson's "The perfidious polynomial," in
which he demonstrates that backwards error analysis should have been discov-
ered in connection with root-finding on polynomials (instead of matrix eigen-
value problems), will become a classic.

Day, Lucille, The world's greatest living geometer, California Monthly (June-
July 1985) 16-17.

Thumbnail sketch of S. S. Chern.
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NEW & LeaeED

26th INTERNATIONAL MATHEMATICAL OLYMPIAD

The following are excerpts from a
report on the 26th International Mathe-
matical Olympiad by M. S. Klamkin. The
complete report, with details on the
U.S. and Canadian teams, appears in
Crux Mathematicorum.

The Twenty-Sixth International
Mathematical Olympiad (IMO) was held
this year in Finland from June 29 to
July 9. Teams from 38 countries took
part in the competition. This was
again a record number of participating
countries, up from last year's record
of 34 countries. The team size was 6
students (maximum number) from each
country, the same as for the last two
years. However, if the number of par-
ticipating countries continues to in-
crease, the team size will probably be
reduced to 4 students (as occurred in
Hungary in 1982). Having a smaller
team size should make it easier for
countries with relatively small popula-
tions to field better teams. Addition-
ally, the expenses will be reduced and
the logistics made easier. The total
number of students was also a record
one of 208, up from last year's record
of 192. The countries participating
for the first time were China, Iran,
Iceland, and Turkey.

The 1986, 1987, and 1988 IMO's are
to be held in Poland, Cuba, and Austra-
lia, respectively. I fully expect to
see a new record number of participat-
ing countries for the 1988 Australian
IMO.

The six problems of the competi-
tion were assigned equal weights of 7
points each (the same as the last 4
IMO's) for a maximum possible score of
42. I believe that this year's compe-
tition was harder than the previous
one, as evidenced by only ten students
having scores of at least 35 (last
year there were 24 such students), and
only two perfect scores, 6 less than
last year.

58

The first prize winners were:

Geza Kos Hungary 42
Daniel Taturu Romania 42
Gabor Megyesi Hungary 38
Nikolai I. Chavdarov Bulgaria 37
Philippe Alphonse Belgium 36
Olga Leonteva Soviet Union 36
Andrew Hassell Australia 35
Vasil B. Daskalov Bulgaria 35
Waldemar Horwat U.S.A. 35
Nguyen T. Dung Vietnam 35
Hagen V. Eitzen West Germany 34
Radu Negulescu Romania 34
Gelca Razvan Romania 34
Jeremy Kahn U.S.A. 34

As the IMO Competition is an indi-
vidual event, the results are announced
officially only for individual team
members. However, team standings are
usually compiled unofficially by adding
up the scores of individual team mem-
bers. Since there were quite a few
teams with less than six students,
these will be noted in the subsequent
table. Congratulations to Romania,
the originator of the IMO in 1959,
which was first. A list of the top
fifteen teams follows:

Rank Country Score
1 Romania 201
2 U.S.A. 180
3 Hungary 168
4 Bulgaria 165
5 Vietnam 144
6 U.S.S.R. 140
7 West Germany 139
8 East Germany 136
9 France 125
10 Great Britain 121
11 Australia 117
12-13 Canada 105
12-13 Czechoslovakia 105
14 Poland 101
15 Brazil 83
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26TH INTERNATIONAL MATH
OLYMPIAD SOLUTIONS

The solutions that follow have been
espectially prepared for publication in
this MAGAZINE by Loren C. Larson, St.
Olaf College.

1. A circle has center on the side
AB of the cyclic quadrilateral ABCD,
The other three sides are tangent to
the circle. Prove that AD + BC = AB.

Sol.

Label the figure as shown.

A 0 B

We may assume that the radius of the
circle at O is unity. Thus, 4D + BC =
(tan o + tan g) + (tan-}—+ tan §).

We know that angle B equals the
angle at B because they are both sup-
plementary to the angle at D, and
therefore B and § are complementary.
Similarly, o and Yy are complementary.
Using this, together with the half-
angle formula for tangent (easily ob-
tained from the double-angle formula),
the last expression becomes

_ sec B - 1
AD + BC = (cot y + ~tan B ) +
(EEE—X—:—l + cot B) = csc y + csc B =

tan y

sec o + sec § = AB.

2. Let n and k be given relatively

prime natural numbers, 0 < k < n. Each
number in the set M = {1, 2, ..., n-1}
is colored either blue or white. It is

given that
(i) for each ©Z ¢ M, both 7 and n-7
have the same color, and
(ii) for each 7 ¢ M, 7 # k, both 7
and |Z - k| have the same color.
Prove that all numbers in M must have
the same color.

Sol. Let [x] denote the unique

integer between 1 and k such that
[z] = = (mod k).
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Alternate applications of (i) and
(ii) (see proof that follows) lead one
to consider the sequence xo,xl,...,xk_l

defined recursively by xy = k and
i [n—xi]
[_xi]

We will show that x. and x.
7 1+1
same color.
Suppose 7 is even. Repeated use of
(ii) implies that x., x.+k, x.+2k, ...,
A 7

if 7 is even,
Zin1
if 7 is odd.

have the

xi+qk all have the same color, where
q is such that xi+qk <n ixﬁ(qﬂ)k-
By (i), n - (xi+qk) also has the same

color, and n - (z,+qk) = [n-xi] =z
Suppose 7 is odd. By (ii), Ik-xi]
and z, have the same color, and
[k—xi| = k-, = [-xi] =T -
It follows that Z0s xl, N xk-l
all have the same color.
An easy induction shows that

9ie Y [(k—t)n] for
i=1,2,...,lk/2]. Thus,
xo’xl""’xk-l is a permutation of
[n], [2@], cees [kn], and because k
is relatively prime to 7, the latter
is a permutation of 1,2,...,k. The

result now follows from repeated use
of (ii).

Zys g = [tn] and =« . =

3. For any polynomial P(x) =

a0+alx+ e

coefficients, the number of coeffi-
cients which are odd is denoted by
w(P). For 7 = 0,1,2,... let Qi($) =
(1+x)$. Prove that if il, iz, ey T

are integers such that 0 <7, < ¢, <

+ @z with integer

< in’ then
+Q.) >

+ Q.
Q7/ + 7

w(Q.
“ 2 n 1

\4
g
~
Sy
~

Sol. We will induct on in. The
inequality holds when in =0 or 1.
Suppose the result holds whenever
in < 23, and now suppose that

23 . s+1.
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Suppose that 2° <1

Let @ = Q. + ... +@. . For
7
1 n

1

1et§=Qj + ... +QJ. . Then

1 s n

Q=4 35 = (1 + x2 Y@ (mod 2). Since
2

deg @ < 2?_ the preceding implies that
w(@) = 2w(Q) Z.Zw(Qj ) (by induction)
1
s
- w1+ 7). ) = w@, ).
71 1

Case 2. Suppose there is an
integer ¢, 0 < £ < n such that
Let P = Qi +...44.

1 Yt

and @ = @. +...+@. . Let
1t+1 “n

gy = 1y - 2° for k = t+1,...,n, and
let @ = @. +...+ 4. . A case
Ji41 In

o S .
Ty 2 Sty

analysis shows that w(P%é) + w(@) > w(P).

8

Also, P+Q = P+Q S@ =P+ (1+oc2 Y@ (mod 2)

2
s

=P +q+ «? Q. Since deg(P+Q) < 23,
the preceding shows that w(P+Q) +

w(@) > w(P) > w(Q; ) (inductive
1
assumption).
This completes the induction.

4, Given a set M of 1985 distinct
positive integers, none of which has a
prime divisor greater than 26, prove
that ¥ contains at least one subset of
four distinct elements whose product
is the fourth power of an integer.

Sol. We will make use of the
following.

Lemma. Any subset S of M with more

than 512 elements contains two elements

whose product is a perfect square.
Proof of Lemma. The elements of S
n, n n

have the form Py p22...p9 , where

p1=2<p2<...

nine prime numbers less than 26. The
9-tuple of exponents, (nl,nz,...,ng),

< p9 = 23 are the

60

has one of 29 (=512) possible parity
patterns. By the pigeonhole principle,
two elements of S will have exponents
with the same parity pattern. Their
product is a perfect square.

By continued use of the Lemma, we
can find distinct elements

.,a513,b513 in M such

that aib. is a perfect square (apply
the Lemma to the sets M, M—{al,bl},

M—{al,bl,az,bz}, el D

By the proof of the Lemma, there are
distinct integers 7 and J such that

cicj is a perfect square, or equiva-
22 .
lently, ez = aibiajbj is a perfect

al,bl,az,bz,..

Let ¢. = a.b..
7 >

fourth power.

5. A circle with center O passes
through the vertices 4 and C of tri-
angle ABC, and intersects the segments
AB and BC again at distinct points K
and V , respectively. The circum-
scribed circles of the triangles ABC
and KBl intersect at exactly two dis-
tinct points B and M. Prove that
angle OMB is a right angle.

Sol. The common chords of the
three pairs of circles are concurrent
at their radical center P. Let a
denote angle AEN and let B = 180° - o.
We find (see figure) that LNVMP and
LNCP are supplementary, so that MNCP
is a cyclic quadrilateral. Therefore,

BM-BP = BN.-BC = BO® - r°, and PM-PB =

PN-PK = PO2 - rz, where r is the radius
of the circle through 4,C,V,K.
2

Hence

2

Po® - BO® = BP(PM-BM) = PM* - BM?, or

MATHEMATICS MAGAZINE
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equivalently, PO2 - PM2 = BO2 - BMZ.
From this it follows that OM is
perpendicular to BM.

6. For every real number xl, con-

struct the sequence T xz, ... by
setting
1
x =x «(x =
n+l n ( n + n )

for each » > 1. Prove that there

exists exactly one value of xl for
<X < 1 for every 7.

which 0 < xn 1

Sol. TFor each positive integer #,
let fn(x) = x(x +% ) for £ > 0. Set
a; = 0 and bl =1, and for n > 2, let

~1,-1 ~1 1
a, = fl fé "'fﬁ—l(l - ﬁ') and

b = f;lfgl...f;il(l). Define
Fn(x) = fhf%_l...fi(x) for x > 0.

1 1
Then Fn(an) = fh(l - ﬁ') =1 - =
1
Falngp) = 1 =1 s FpByyy) = 1, and
1
Fn(bn) = fh(l) =1 +o. Thus,

Fn(an) < Fn(an+l) ) Fn(bn+l) < Fn(bn)'
Since Fn is an increasing function

(each f, is increasing), it must be
k g

< < < o
the case that a, <a,.4 bn+1 bn
Let a = IZm a and b = IZm b_. The
oo T e T

preceding work shows that a < b.
Let x. be any real number in the

1
interval (0,1). The condition that
. . 1
> > 1 - =
*oq > %, is equivalent to z, 1 i
and this is equivalent to x> a,. The

condition that
n+1l

Thus, 0 < &
n

< 1 is equivalent

to &y < by <Py <L
holds for all » if and only if

a <z < b.

To prove uniqueness, it suffices to
prove that a = b, and for this, it is

<1
n o n
The function Fn—l(x) is convex (each

sufficient to prove that bn -a

fk is convex), and therefore, because

Fn—l(o) = 0 and Fn—l(bn) = 1, it follows

VOL. 59, NO. 1, FEBRUARY 1986

x
that Fn—l(x) E-E; for 0 < x f_bn. In

; 1_
particular, 1 - - = Fn—l(an) 5'an/bn'
1 1
It follows that bn -a, < bn <=,

and this completes the proof.
MAA AWARDS

At the annual Business Meeting of
the Mathematical Association of Ameri-
ca, held January 10, 1986, in New
Orleans, Louisiana, three individuals
received special recognition.

Arnold Ross of Ohio State Univer-
sity was awarded the Award for Dis-
tinguished Service to Mathematics.
Professor Ross was chosen for this
award for his '"significant impact on
mathematics on a national scale
through his unique summer program for
high school students. He has profound-
ly influenced many people early in
their lives, among them, a great
number of original, now eminent,
colleagues in mathematics. Indeed, no
major mathematics conference is with-
out a few mathematicians who can tell
of their experience in Professor Ross'
summer programs.'

George Miel of the University of
Nevada, Las Vegas, was awarded the
Chauvenet Prize "for a noteworthy
expository or survey paper published
in a North American journal in 1981-
83." The article for which Professor
Miel received the award was "Of calcu-
lations past and present: the Archi-
medean algorithm," which appeared in
the American Mathematical Monthly 90
(1983), 17-35. The Committee on the
Chauvenet Prize consisted of Peter J.
Hilton (chair), Theodore W. Gamelin,
and Lawrence A. Zalcman.

Edward W. Packel of Lake Forest
College was awarded the MAA Book
Prize "for a distinguished, innovative
book published by the MAA."  The book
for which Professor Packel won the
prize was The Mathematics of Games and
Gambling, volume 28 in the New Mathe-
matical Library series of the MAA.
The Committee on the MAA Book Prize
consisted of Doris Schattschneider
(chair), J.A. Seebach, and Gary J.
Sherman.
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EDITOR OF MONTHLY NAMED

The Board of Governors of the MAA,
at their meeting in Laramie, Wyoming,
August 11, 1985, elected Herbert Wilf,
of the University of Pennsylvania,
Editor of the American Mathematical
Monthly for a five year term beginning
January, 1987. Professor Wilf will
replace Paul Halmos.

GERHARD N. WOLLAN

Gerhard N. Wollan of Purdue Univer-
sity died on July 16, 1985. Professor
Wollan was Editor of MATHEMATICS
MAGAZINE from 1971 until 1976.

ANNOUNGEMENTS

The New York State Mathematics
Association of Two-Year Colleges will
hold its annual conference at Gros-
singer's Hotel in Grossinger, New
York, April 18-20, 1986. For further
information contact: Gerald M. Smith,
NYSMATYC President-Elect, Cayuga
Community College, Auburn, NY 13021
(Phone: (315) 255-1743).

Peter J. Hilton will be the princi-
pal speaker at the annual Pi Mu Epsilon
Student Conference at St. John's Uni-
versity, Collegeville, MN 56321,
March 14-15, 1986. Additional talks
will be given by students who have
been working on independent study or
research projects. For more informa-
tion contact Mike Gass at (612)363-3192
or Jerry Lenz at (612) 363-3193.

The Eugene Strens Memorial Confer-
ence on Intuitive and Recreational
Mathematics and Its History will be
held at the University of Calgary,
July 27-August 2, 1986. 1Invited
speakers include Elwyn Berlekamp, John
Conway, H.S.M. Coxeter, Kee Dewdney,
Aviezri Fraenkel, Martin Gardner, Ron
Graham, Branko Griinbaum, Hendrik
Lenstra, Willy Moser, Angela Newing,
Roger Penrose, John Selfridge, Doris
Schattschneider, and David Singmaster.
For further information contact
Richard Guy or Bill Sands, Department
of Mathematics and Statistics, The
University of Calgary, Calgary,
Alberta, Canada T2N 1IN4
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INTERNATIONAL CONGRESS IN
BERKELEY

For the first time since 1950 an
International Congress of Mathemati-
cians will be held in the United
States. The last Congress in America
was in 1950 in Cambridge, Massachu-
setts; the last on this continent in
Vancouver in 1974. The highlight of
the Congress for many will be the
awarding of the Fields Medals. At
each Congress since the Oslo Congress
of 1936 these prizes have been given
to the two (or in some years four)
mathematicians under the age of 40 who
have made important contributions to
mathematics. Congresses are held only
every four years. The Fields Medals
are viewed as comparable to Nobel
Prizes, though the criteria for selec-
tion are quite different.

The Congress in Berkeley will take
place August 3-11, 1986. There will
be 19 areas of mathematics covered.

For more information write ICM-86,
Post Office Box 6887, Providence, RI
02940.

USCMI PRE-CONGRESS SERIES OF
INVITED SURVEY TALKS

On the afternoon of August 2nd,
1986, The United States Commission on
Mathematical Instruction will sponsor
a series of invited survey talks aimed
at enhancing understanding and appre-
ciation of some of the major research-
related work which will be discussed
at ICM-86.

The USCMI invites recommendations
of potential speakers and their areas
of interest. Please send all sugges-
tions to the session organizer:

Warren Page, New York City Technical
College, 300 Jay Street, Brooklyn,
NY 11201.

Further details, including the
names of speakers and titles of their
survey talks will be announced in a
forthcoming issue of MATHEMATICS
MAGAZINE.
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THE EUGENE STRENS MEMORIAL CONFERENCE ON INTUITIVE
& RECREATIONAL MATHEMATICS & ITS HISTORY

July 27 to August 2, 1986

THE UNIVERSITY OF CALGARY

to mark the acquisition by the University Library of the Strens Collection.

Invited speakers include Elwyn Berlekamp, John Conway, H.S.M. Coxeter,
Kee Dewdney, Aviezri Fraenkel, Martin Gardner, Ron Graham, Branko Griinbaum,
Hendrik Lenstra, Willy Moser, Angela Newing, Roger Penrose, John Selfridge,
Doris Schattschneider & David Singmaster.

For information and application forms, write to Richard Guy & Bill Sands,
Department of Mathematics & Statistics, The University of Calgary, Calgary,
Alberta, Canada T2N 1N4.

SAUSIQA MAA Placement Tests can

help solve your college’s
StUdent mathematics placement

belongs problems.

e Arithmetic & Basic Skills

Basic Algebra

Advanced Algebra

e Trigonometry/Elementary Functions

Calculus Readiness

For information, write to

The Mathematical
Association of America
Department PTP

1529 Eighteenth Street, N.W.
Washington, D.C. 20036
(202) 387-5200
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Science in the first person §

This delightful memoir traces the life of its prize-winning
author from his youth in Poland through his long and bril-
liant career in mathematical research in the United States.
Kac is eloquent and outspoken on matters ranging from
anti-Semitism in prewar Poland to his major contribu-
tion in probability theory to his views on “pure”
versus “‘applied” mathematics. ENIGMAS OF
CHANCE is a rare look into the world of
modern mathematics and a charming self-
portrait of one of its most original minds.

Emfgmas of

utobiograj s
e&Row -F_

Mark Kac

Sixth volume in the ALFRED P. SLOAN FO SERIES of scientific autobiographies

J
© Rockefeler University P.
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For the Mathematician . . .

< NUMBER SYSTEMS AND THE FOUNDATIONS OF ANALYSIS
by Elliott Mendelson
* Orig. Ed. 1973, Reprint 1985 w/corr 370pp.  $24.95 -
The book traces the development of the number systems, from the natural numbers
through the integers, rational numbers, and real numbers (with appendices on complex
numbers and cardinal numbers). The emphasis is on clear, precise explanations of ideas,
after the need for them has been adequately motivated. To help the beginner, proofs are
given in painstaking detail. Understanding of the meaning and the properties of the
various kinds of numbers used in mathematics is necessary for all scientists, and for
teachers of mathematics in secondary schools and colleges. The book provides complete
treatment of the underlying ideas and the proofs of the fundamental results concerning
- the number systems. oMo
< NORMAL APPROXIMATION AND ASYMPTOTIC EXPANSIONS
by R.N. Bhattacharya & R. Ranga Rao
Orig. Ed. 1976, Reprint 1985 w/corr 288pp.  $46.95
< THE ALGEBRAIC STRUCTURE OF GROUP RINGS
by Donald S. Passman
* Orig. Ed. 1977, Reprint 1985 w/corr 750 pp. $59.95 g g

When ordering,please add $4.00 for first book ($1.00 each additional) to cover shipping.
KRIEGER PUBLISHING COMPANY, INC.
P.O. Box 9542 e Melbourne, FL 32902-9542 e (305) 724-9542
' ¢ ¢ ¢ '

¢ ¢ ¢ ¢
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AA STUDIES IN
MATHEMATICS

Studies in Numerical Analysis

MAA Studies in Mathematics #24

Gene H. Golub, Editor
415 pp. Hardbound.
List: $42.00 MAA Member: $31.00

This volume is a collection of papers describing the wide range of research ac-
tivity in numerical analysis. The articles describe solutions to a variety of prob-
lems using many different kinds of computational tools. Some of the compu-
tations require nothing more than a hand held calculator: others require the
most modern computer. While the papers do not cover all of the problems that
arise in numerical analysis, they do offer an enticing and informative sample.
Numerical analysis has a long tradition within mathematics and science,
beginning with the work of the early astronomers who needed numerical pro-
cedures to help them solve complex problems. The subject has grown and de-
veloped many branches, but it has not become compartmentalized. Solving
problems using numerical techniques often requires an understanding of sever-
al of the branches. This fact is reflected in the papers in this collection.
Computational devices have expanded tremendously over the years, and
the papers in this volume present the different techniques needed for and made
possible by several of these computational devices.
Table of Contents
The Perfidious Polynomial, James H. Wilkinson
Newton’s Method, Jorge J. Moré and D. C. Sorensen
Research Directions in Sparse Matrix Computations, lain S. Duff
Questions of Numerical Conditions Related to Polynomials, Walter Gautschi

A Generalized Conjugate Gradient Method for the Numerical Solution of Elliptic
Partial Differential Equations, Paul Concus, Gene H. Golub and Dianne P.
O’Leary

Solving Differential Equations on a Hand Held Programmable Calculator. J. Barkley
Rosser

Finite Difference Solution of Boundary Value Problems in Ordinary Differential
Equations, V. Pereyra

Multigrid Methods for Partial Differential Equations, Dennis C. Jespersen
Fast Poisson Solvers, Paul N. Swarztrauber

Poisson’s Equation in a Hypercube: Discrete Fourier Methods, Eigenfunction Ex-
pansions, Padé Approximation to Eigenvalues, Peter Henrici

Order From:
The Mathematical Association of America
15629 Eighteenth Street, N.W.

Washington, D.C. 20036
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Eminent Mathematicians and Mathematical Expositors Speak to

STUDENTS and TEACHERS in

The NEW
MATHEMATICAL

LIBRARY

An internationally acclaimed paperback series providing:
® stimulating excursions for students beyond traditional school mathe-

matics.

® supplementary reading for school and college classrooms.
® valuable background reading for teachers.
e challenging problems for solvers of all ages from high school compe-

titions in the US and abroad.

The New Mathematical Library is published by the MATHEMATICAL
ASSOCIATION OF AMERICA. The volumes are paperbound.

NUMBERS: RATIONAL AND IRRATIONAL
by Ivan Niven $8.75, §7 00*  NML-01

WHAT IS CALCULUS ABOUT? by W. W
Sawyer $8 75, $7.00* NML-02

AN INTRODUCTION TO INEQUALITIES,
by E. F Beckenbach, and R Bellman
$8 75, $7.00* NML-03

GEOMETRIC INEQUALITIES, by N D
Kazarinoff $8.75, $7 00* NML-04

THE CONTEST PROBLEM BOOK. Prob-
lems from the Annual High School Mathe-
matics Examinations sponsored by the
MAA, NCTM, Mu Alpha Theta, The So-
clety of Actuaries. and the Casualty Actu-
arial Society Covers the period
1950-1960 Compiled and with solutions
by C. T Salkind $8 75, $7.00* NML-05

THE LORE OF LARGE NUMBERS, by P J.
Davis $10.00, $8.00* NML-06

USES OF INFINITY, by Leo lepm
$8 75, $7.00* NML-

GEOMETRIC TRANSFORMATIONS, by
| M Yaglom, translated by Allen
Shields $8 75, $7 00* NML-08

CONTINUED FRACTIONS, by C D Olds
$10 00. $8.00* NML-09

GRAPHS AND THEIR USES, by Oysteln
Ore $8 75, $7 00* NML-10

HUNGARIAN PROBLEM BOOKS | and I,
based on the Eotvos Competitions 1894-
1905 and 1906-1928 Translated by E
Rapaport. $8 75, $7 00* each
NML-11and NML-12
EPISODES FROM THE EARLY HISTORY
OF MATHEMATICS, BY A. Aaboe. $8 75,
$7 00* ML-13
GROUPS AND THEIR GRAPHS, by |
Grossman and W. Magnus $10 00,
$8 00~ NML-14

THE MATHEMATICS OF CHOICE, by Ivan
Niven. $10.00, $8 00* NML-15

FROM PYTHAGORAS TO EINSTEIN, by
K O Friedrichs. $8 75, $7 00* NML-16

THE CONTEST PROBLEM BOOK 11. A con-
tinuation of NML-05 containing problems
and solutions from the Annual High
School Mathematics Examinations for the
period 1961-1965 $8 75, $7.00*
NML-17

FIRST CONCEPTS OF TOPOLOGY, by
W. G. Chinnand N E Steenrod. $10 00,
$8.00* NML-18

GEOMETRY REVISITED, by H S.M. Coxe-
ter, and S. L Greitzer $10 00, $8 00*
NML-19

INVITATION TO NUMBER THEORY, by
Oystein Ore $8 75, $7 00* NML-20

GEOMETRIC TRANSFORMATIONS II, by
. Yaglom. translated by Allen
Shlelds $10 00, $8.00* NML-21
ELEMENTARY CRYPTANALYSIS—A
Mathematical Approach, by Abraham
Sinkov. $10 00, $8 00* NML-22
INGENUITY IN MATHEMATICS, by Ross
Honsberger $10 00, $8 00 NML-23
|G.EOMETRII: TRANSFORMATIONS Ill, by

. Yaglom, translated by Abe
Shenitzer $10 00, $8 00* NML-24

THE CONTEST PROBLEM BOOK Ill. A
continuation of NML-05 and NML-17:
containing problems and solutions from
the Annual High School Mathematics
Examinations for the period 1966-1972.
$10.00, $8 00* NML-25

MATHEMATICAL METHODS IN SCI-
ENCE, by George Polya. $10,00, $8 Ogé
ML

INTERNATIONAL MATHEMATICAL
OLYMPIADS, 1959-1977. Problems, with
solutions, from the first nineteen Interna-
tional Mathematical Olympiads Compiled
and with solutions by S L. Greitzer.
$10 00, $8 00* NML-27

THE MATHEMATICS OF GAMES AND
GAMBLING, by Edward W Packel.
$10 00, $8.00* NML-28

THE CONTEST PROGRAM BOOK IV,
Annual High School Mathematics Exami-
nations 1973-1982 Compiled and with
solutions by R A Artino, A M Gaglione
and Niel Shell. $11 50, $9 20* NML-29
THE ROLE OF MATHEMATICS IN SCI-
ENCE, by M M. Schiffer and Leon
Bowden $16.00, $12.50* NML-30

*Prices marked with an asterisk are for mem-
bers of the MAA

Send Orders to

The Mathematical Association of America
1529 Eighteenth St., N W

Washington, D C 20036

THE MATHEMATICAL ASSOCIATION OF AMERICA

1529 Eighteenth Street, N.W.
Washington, DC 20036
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