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 Solving a Jules Verne Cryptogram

 To save the life of an innocent man, a secret

 message must be deciphered; Jules Verne
 provides an original technique

 FREDERICK GASS

 Miami Unziversity

 Oxford, OH 45056

 "... KSPPSUVJHD" is the end of a secret message that opens one of Jules Verne's lesser-known
 stories, La Jangada, known in English as Eight Hundred Leagues on the Amazon. Set in Brazil, the
 story is about Joam Dacosta, who stands wrongly accused of a heinous murder and diamond

 theft. The plot of this two-part story is long and involved, with Book One ("The Giant Raft")
 providing most of the adventure, and Book Two ("The Cryptogram") most of the suspense. Near

 the end, as gallows are being erected outside Joam's prison cell, his friends strive frantically to

 discover the message in the cryptogram, for by now it is clear that therein lies Joam's only hope.

 Even Judge Jarriquez attacks the problem. The final paragraph of the cryptogram, the only

 paragraph that is actually spelled out in the story, is as follows:

 P H Y J S L Y D D Q F D Z X G A S G Z Z Q Q E H X G K F N D R X U
 J U G I O C Y T D X V K S B X H H U Y P O H D V Y R Y M H U H P U
 Y D K J O X P H E T O Z SL E TN P M V F F O V P D P A J X H YY
 N O J Y G G A Y M E Q Y N F U QL N M V L Y F G S U Z M Q I Z T L
 B Q G Y U G S Q E U B V N R C R E D G R U Z B L R M X Y U H 0 H P (1)
 Z D R R G C R O H E P Q XU F I V V R P L P H O N T H V D D Q FH
 Q S N T Z H H H N F E P M Q K Y U U E X K T O G Z G K Y U U M F V
 I J D Q D P Z J Q S Y K R P L X H X Q R Y M V K L O H H H O T O Z
 V D K S P P S U V J H D

 In (1), which I will regard as a cryptogram in itself, there are 276 letters and also several
 features that make it an interesting source of illustrations. My aim is for brevity and variety, using
 the Jules Verne cryptogram as motivation to discuss several interesting aspects of cryptanalysis. I
 encourage interested readers to consult [1], [5] and [12] for more information about the subject.
 References [6], [8], [9], and [11] are good for historical perspective, and [2] is the leading journal in
 the field. As you will see, some mathematical ideas begin to appear after we discuss a few
 interesting preliminaries. Reference [10] contains statistical details.

 Let's go to work on Jules Verne's cryptogram. We approach it as scientific detectives,
 systematically forming hypotheses and checking them out. The first thing to consider is the
 language of the original message, the most obvious choices for us being English, Portuguese
 (because of the Brazilian setting), and French (the original language of Verne's tales). French
 would seem to be the most likely choice, but that particular detail of the problem will not be
 critical until later on in our investigation.
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 At any level of cryptanalysis it is important to identify other reasonable initial assumptions

 about the origin of a cryptogram. In the present case, we will assume that the writer of the

 message had essentially a one-time-only need for secrecy, and that the cryptogram was devised by
 him/her alone or in collusion with a very few confidants. Now let's move on to the central

 question: What method was used to transform the original message into a cryptogram?

 One familiar way to transform a message is to replace some or all of the words and phrases by

 code words and phrases given in a special book that resembles a dictionary. In fact, the word

 "code" refers precisely to such a system, even though the general public often uses "secret code"
 and "code-breaking" to embrace all aspects of cryptic writing. Let's tentatively rule out the

 possibility of a code in the present case, because one is unlikely to go to the trouble of preparing a
 code book when there is evidently only one message at stake.

 One standard alternative to code is transposition, whereby the original message is rearranged so
 as to be unintelligible. For example, the message could be divided into five-letter groups, and then

 each group rewritten in reverse order or subjected to some other fixed permutation. A more
 complicated version of this scheme plays a crucial role in Verne's Journey to the Center of the

 Earth, and a still more complicated one appears early in his Mathias Sandorf. (For an interesting

 and thorough discussion of Jules Verne as cryptographer, consult reference [4].)
 To rule out transposition in the present case, we refer to the most fundamental piece of

 information at the cryptanalyst's disposal, the frequency distribution. For our cryptogram, this

 information is shown in TABLE 1.

 i: A B C D E F G H I J K L M N 0 P Q R S T U V X Y Z

 fi: 3 4 3 16 9 10 13 23 4 8 9 9 9 9 12 16 16 12 10 8 17 13 12 19 12

 TABLE 1. Frequency distribution of letters in the cryptogram (1).

 It is well known that certain letters-e and t, for instance-tend to appear with the highest
 frequency in standard English, and similar results are found in other languages. If this cryptogram

 were the result of a transposition, then all 23 of those H's would have been present in the original
 message, and likewise all 16 Q's, 12 Z's and so forth-an unlikely possibility for any modern
 language.

 A simple alternative to code and transposition is the scheme known as "monoalphabetic
 substitution," whereby each letter of the original message is replaced by a particular "cipher
 letter" substitute according to some correspondence such as the one pictured in (2).

 Monoalphabetic Substitution

 Plain: a bcd e f gh i jk Imnopq r s t uvwxy z
 Cipher: P QS UVWXYZINTE GRA L B CDFHJKMO (2)

 Samplemessage: f our s c oreand s eveny ear s .
 Cryptogram: WRFBCS RBVPGUC VHVGMVPB C.

 The example in (2) shows how this substitution transforms a plain message into a cryptogram. If
 one were to draw up the frequency distribution of such a cryptogram, it is likely that V would be
 the most frequently used letter, possibly followed by D, since those two are the cipher replace-
 ments for e and t, respectively. (As a rule, I will use capitals for cipher text letters and lower case
 for plain text in this article.)

 A careful reading of Verne's cryptogram reveals the occurrence of HHH at two locations,
 prompting one to question the likelihood of a monoalphabetic substitution, since those three H's
 would have to result from three of whatever is the plain counterpart of H. Three-in-a-row is
 possible in a plain message, however. Consider phrases like "three eggs" and "small legs," for
 instance. Still, those two occurrences of "HHH" look suspicious, and after a fruitless search for

 4 MATHEMATICS MAGAZINE
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 clues based on the assumption of a monoalphabetic substitution, Judge Jarriquez is prepared to

 consider an alternative hypothesis, as we will, later.
 Although we won't stop to consider techniques used on monoalphabetic substitution crypto-

 grams, there is a very nice mathematical scheme that the judge could have used to cast further
 doubt on the likelihood of a monoalphabetic. The idea-discovered by William F. Friedman in
 1920 and published in [3]-is to calculate a statistic that measures the variation in the frequency

 distribution, and then compare that statistic with the value one would expect in a monoalphabetic
 case. This statistic, the index of coincidence (I.C.), is closely related to a formula used by

 geneticists to measure the diversity of a species.

 Let fA, fB,..., fz be the frequency of letters A, B,..., Z, respectively, in a given cryptogram
 that contains N letters. Then

 I.C. = Z ATAT1ATIATI3\
 * i=A NN I- N(N -I) i=Ai( 1(3

 For Verne's cryptogram we have N = 276, and from TABLE 1 we calculate I. C. = 0.044. Using
 either of the formulas in (3), one can make the following interpretation of Friedman's index: If

 two letters were chosen at random (without replacement) from the cryptogram, then the I. C. is
 the probability that those two letters would be alike. The probability of getting a particular letter

 as our first choice is fi/N, and (fi - 1)/(N - 1) is the probability that our second letter will be
 the same.

 What value would one expect the I.C. of a cryptogram to have, approximately? If the
 cryptogram were actually a plain, unenciphered message, say, in standard English, then it could be
 considered a random sample of N letters from an extremely large population. The relative
 frequencies of letters in that population are shown in TABLE 2. (Please note that any proposed
 frequency distribution for a modem language must be taken with a grain of salt. The one in
 TABLE 2 was generated by the author of [12] from a sample of 1000 letters.)

 Letter: a b c d e f g h i j k I m

 % Frequency: 7.3 0.9 3.0 4.4 13.0 2.8 1.6 3.5 7.4 0.2 0.3 3.5 2.5

 Letter: n O p q r s t u v w x y z

 % Frequency: 7.8 7.4 2.7 0.3 7.7 6.3 9.3 2.7 1.3 1.6 0.5 1.9 0.1

 TABLE 2. Relative frequencies in standard english.

 If two letters are chosen at random from that larger population, then the probability of a

 matched pair is called the "kappa value" for that particular language. Therefore, we have

 K = y(pi)2, where i varies among the letters of the alphabet, and pi is a letter's probability
 according to the relative frequency distribution. So from TABLE 2 we have p, = .073, and so on up
 to p. = .001. The K values for several languages are shown in (4).

 Language K

 English 0.066
 French 0.076

 German 0.076 (4)

 Portuguese 0.079

 Russian 0.053

 Spanish 0.078

 The fact that links the two previous paragraphs is this: The I.C. for a monoalphabetic

 substitution cryptogram is equal to that of the original plain text message, because in both cases

 VOL. 59, NO. 1, FEBRUARY 1986 5
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 the summation involves the same numbers f (although, following the substitution, the numbers
 are associated with different letters). Because of this observation, we would expect the I. C. of the
 cryptogram to be an approximation of K for the language of the original message.

 In fact, it turns out that the I. C. is an unbiased estimator for K. (Students of statistics may
 have noted already that the I. C. and K bear some resemblance to sample variance and population
 variance formulas, respectively.) Comparing the I. C. of Verne's cryptogram with the information
 in (4), we might conclude that Verne's I. C. is a rather poor approximation of K for English,
 French or Portuguese, and so the cryptogram is not likely to be a monoalphabetic. But wait. We

 cannot judge the goodness of an approximation without some sort of error estimate or (in this
 case) an alternative to monoalphabeticity that is suggested by I. C. = 0.044.

 Polyalphabetic substitution

 "Polyalphabetic" means that each plain letter has more than one possible cipher equivalent, so
 that e, for instance, might be represented by J, H, G, or even E, at the various locations where e
 occurs in the original message. One way to accomplish such a substitution is shown in (5).

 Gronsfeld Polyalphabetic Substitution

 Keyword: 5203

 Key sequence: 5 2 0 3 520 35203 5 20 3 52 03 5 2035 2 0 3 5 203520 ... (5)

 Plain message: f o u r s c o r e a n d s e v e ny e a r s ago o u r f a t he r s...

 Cipher message: KQ UUXEO UJCNGXG VHSA ED WUAJTQ UUKCTKJTS ...

 It is a simple scheme attributed to the 17th century Count of Gronsfeld, and it employs the digits
 of a "keyword" to determine cipher letters. If key digit 5, say, lies above a certain letter of the
 plain message, then the cipher letter that corresponds to it is the letter 5 positions later in
 the alphabet (with A being the letter that follows Z). If the key digit for a certain letter is 0, then
 the cipher letter is the same as the plain.

 The effect of most polyalphabetic substitutions on a frequency distribution is to flatten it out.
 The distribution of letters in an original message is apt to exhibit the variety predicted by tables
 like the one in TABLE 2. But after polyalphabetic substitution, one finds that high frequency letters
 have spread their wealth of occurrences among several possible cipher equivalents, and likewise
 the poverty of a low frequency is suffered by more than just one cipher equivalent. The ultimate in
 flat distributions is the one wherein all letters are equally represented. For instance, if all 26 letters
 of standard English were equally likely, then we would have the flat distribution and K value
 shown in (6). Of course, smaller alphabets yield larger K(flat). If we assume French without a w,
 say, then K(flat) = 0.040.

 Kappa For a Flat Distribution

 i = A through Z (26 letters)

 Pi = 1/26 ~- 0.-038 (6)
 K(flat) =>.p- =Z(1/26)2 = 26(1/26)2 = 1/26 0.038.

 Since the I.C. of Verne's cryptogram is closer to K(flat) than to K for English, French or
 Portuguese, we are led to entertain the hypothesis of a polyalphabetic substitution.

 Judge Jarriquez has already arrived at that hypothesis, and he has focused upon the Gronsfeld
 as the most reasonable polyalphabetic scheme to consider first. But now the good judge has
 reached an impasse, for he sees no way to discover the keyword that unlocks the message. For him
 and for author Verne, logical analysis has run its course and must now be supplemented by a final
 burst of desperate searching and good fortune.
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This content downloaded from 132.239.1.230 on Thu, 14 Apr 2016 04:01:46 UTC
All use subject to http://about.jstor.org/terms



 We, on the other hand, have several means of attacking a suspected Gronsfeld cryptogram. My

 plan is to complete this article by looking at several interesting and to some extent duplicating

 techniques, rather than simply pursue one line of reasoning toward the goal of solution.

 Key length

 Let's use (5) to collect some ideas about the structure of the Gronsfeld system. Since the

 keyword in that example has four digits, we say that 4 is the "key length," and that the plain and

 cipher messages may accordingly be partitioned into four "components." For example, the key

 digit 2 governs the component ocaeysoar... in the plain message and the component

 QECGA UQCT... in the cipher message (check the letters below the 2's). Notice that the cipher
 component is a very simple monoalphabetic variation of its corresponding plain component: in

 the example above, each cipher letter is simply two spaces beyond its plain equivalent in the

 alphabet. (This simple, shift-type monoalphabetic is called a Caesar Cipher, after its most famous
 user.) So, if one can divide a Gronsfeld cryptogram into its separate cipher components, the rest
 of the solution should be relatively easy. And the way to identify the components is to determine

 the key length.
 In 1863, a Prussian military officer named F. W. Kasiski published a simple number-theoretic

 means of searching for the key length. Like so many techniques of cryptanalysis, it deals with

 pattern repetitions that may exist in the cryptogram. Also, it is the basis of the solution discussed
 in [7].

 Look again at (5) and look for repeated sequences of letters in the cryptogram: there are two

 QUU's and two JT's. With the plain message and the key sequence before us, we see that the JT
 repetition is simply a fluke that represents no special interplay among the key sequence, the plain

 and the cipher; but the QUU is a different story. Generally speaking, the longer repetitions (QUU

 as opposed to JT, here) tend to be more significant because we feel intuitively that long
 repetitions probably happen by design rather than by chance. In the case of QUU, the cipher

 repetition happens precisely because both occurrences of "our" in the plain message coincided

 with the repetition of 203 in the key sequence. Let's call this a "special repetition."

 What is special about a special repetition is the way the keyword repeats itself in the interval

 between the two occurrences. In (5), beginning with the first QUU, we find exactly six repetitions
 of the keyword 5203 before the next occurrence of QUU. This observation suggests that we look
 for long repetitions in any suspected Gronsfeld cryptogram, determine the lengths of the

 intervening intervals (figured as above for QUU), and proceed on the assumption that whole

 repetitions of the keyword fit exactly into those intervals. In other words, the key length is a divisor

 of those interval lengths. That is Kasiski's approach.
 In TABLE 3 is the data for a Kasiski analysis of Verne's cryptogram. If we assume that these

 repetitions are all special, then the key length must be a common divisor of 186, 192, 60, 54, and
 12, and soitmustbe2, 3,or6.

 We could use Friedman's I.C. to help us identify the most likely key length among 2, 3, and 6.
 The idea behind it is to recall that each cipher component is really just a simple monoalphabetic
 substitution (specifically, a Caesar Cipher) of its plain counterpart. To test the hypothesis that the
 key length is n, one divides the cryptogram into n components and calculates the I.C. for each

 DDQF at interval of length 186 = 2 3 . 31

 RYM 192=26-3

 TOZ 186 = 2 331

 RPL 60=22- 35

 HHH 54= 2 33

 KYUU 12= 22 3

 TABLE 3. Kasiski analysis of Verne's cryptogram.

 VOL. 59, NO. 1, FEBRUARY 1986 7

This content downloaded from 132.239.1.230 on Thu, 14 Apr 2016 04:01:46 UTC
All use subject to http://about.jstor.org/terms



 Assumed keylength n I.C.'s of the n components

 2 0.045 0.057

 3 0.055 0.052 0.054

 4 0.058 0.053 0.040 0.055

 5 0.041 0.040 0.042 0.047 0.050

 6 0.061 0.083 0.071 0.065 0.074 0.071

 7 0.036 0.044 0.042 0.039 0.042 0.047 0.046

 TABLE 4

 one, looking to see whether those values are reasonably close to K for a spoken language-some-
 where between .06 and .08. The results for n = 2, 3, and 6, among others, are shown in TABLE 4.

 Another idea, one that bypasses the Kasiski approach, is simply to test every hypothetical key
 length from n = 2 on up, using the method described above. This approach works well when one

 is aided by a computer, and for Verne's cryptogram the results are shown in TABLE 4. Doesn't

 n = 6 suggest itself nicely? Before leaving the index of coincidence, I should mention that it was
 devised for use with ciphers much more complicated than the Gronsfeld. In that context its use
 here might be considered an example of mathematical overkill.

 Finding the plain components

 Let's assume now that Verne's cryptogram is a Gronsfeld with a key length of 6. Then it has six

 components, both in plain and in cipher, and the first of the cipher components begins
 PYZZXRIX.... (Just take the first letter of the cryptogram and every sixth one thereafter. Using

 modular arithmetic, we could say that the i th letter is in the 1st component if and only if
 i1 mod 6.) I want to show you an interesting way to search for the corresponding plain
 component. Since we are getting close to the particulars of the original message, the time has come
 to think in terms of some particular language-in this case, French. Some frequency data for
 standard French are given in TABLE 5.

 Our problem, of course, is that we do not know the first digit of the keyword, the digit that
 governs this first component. Call that digit d for the moment. If d happens to be 0, then the
 cipher and plain components are the same. If d happens to be 1, then the cipher component is
 letter-for-letter one position beyond its plain component in the alphabet. In (7) we see all the
 possibilities for this first component of the Verne cryptogram.

 Digit d Corresponding Plain Component

 0 pyzzxrix...

 1 oxyyvqhv...

 2 nvxxupgu...

 3 muvvtoft...

 4 ltuusnes ... (7)

 5 ksttrmdr...

 6 jrssqlcq...

 7 iqrrpkbp...

 8 hpqqojao...

 9 goppnizn...

 The question is, which of the possible plain components is most likely the correct one? Another
 way to put the question is to ask which line contains the letters that are most likely to be part of
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 Letter: a b c d e f g h i j k I m

 % Frequency: 9.4 1.0 2.6 3.4 15.9 1.0 1.0 0.8 8.4 0.9 0.0 5.3 3.2

 Letter: n o p q r s t u v x y z

 % Frequency: 7.2 5.1 2.9 1.1 6.5 7.9 7.3 6.2 2.2 0.3 0.2 0.3

 TABLE 5. Relative frequencies in standard French (without wv).

 the original plain text message, and therein lies a clue to our next step: using the data in TABLE 5,
 we assign a probability to each line of component in (7). More specifically, we treat each line as a
 statistical experiment, with the letters being the results of independent trials. In (7), if d = 1, then
 the plain component is oxyy..., and the probability associated with the component would be the

 product of the individual letter possibilities, PO P px p * - p , an exceedingly small value. For
 the sake of convenience, one can replace each probability p by the corresponding percentage
 lOOp, which would yield an exceedingly large value, and then scale back a bit by finding instead
 the logarithm of that value:

 log(lOOpo) + log(lOOpx) + log(lOOpy) + log(lOOp') +

 (The percentage may be taken directly from the frequency distribution in TABLE 5.) In (8) we see
 the complete computer-generated results and the fact that d = 4 yields the plain component of
 highest probability. On this basis it appears that the first component of the plain message is
 ltuusnes....

 d Sum of log-percentages for corresponding plain component

 0 58.0

 1 59.7

 2 54.4

 3 68.6

 4 79.7 (8)

 5 60.7

 6 53.3

 7 58.2

 8 58.7

 9 58.8

 By using the above procedure on all six cipher components of the Verne cryptogram, we can
 discover the plain components and hence the original message. Before proceeding to the message,
 however, I want to show you my favorite means of solving a suspected Gronsfeld.

 The probable word method

 This method of solving Gronsfelds is interesting for at least two reasons. First, we try to
 imagine what thoughts might have occupied the writer of the cryptogram, and we use intuition or
 psychology or whatever to choose words that might have been used to express those thoughts.
 Second, with a well-chosen "probable word," we can discover the keyword and the original
 message in a very straightforward way.

 Take the Verne cryptogram, for instance. If it really does concern the crime with which Joam
 Dacosta is charged, then "Dacosta," "diamant," and other (French) words dealing with particu-
 lars of the crime are probable word candidates. Let's stick with "Dacosta" for the sake of
 illustration. If "Dacosta" is mentioned in the original message, then somewhere in the cryptogram

 is a sequence of seven letters that forms a cipher equivalent of that word. Furthermore, the
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 Gronsfeld scheme guarantees that that sequence satisfies what I shall call the "Nines Condition":

 none of the cipher letters is more than nine positions later in the alphabet than its plain
 counterpart in "Dacosta."

 Here, then, is what we do, with the aid of a computer if possible: check each sequence of seven
 consecutive cipher letters in the cryptogram to see if it satisfies the Nines Condition. (As a related
 problem, you might try to estimate the probability that a sequence of seven randomly-chosen

 letters will satisfy that condition. The probability is quite small.) In other words, we search for

 locations in the cryptogram where the cipher equivalent of "Dacosta" might be found.
 Display (9) shows how this search begins. In each line of (9) a different sequence of cipher

 letters is checked as a possible location for "Dacosta"; and an "x" signifies that the cipher letter

 at that location is too far down the alphabet beyond its counterpart in "Dacosta." For instance

 when the first seven letters PHYJSLY of the cryptogram are checked, the computer prints
 " x7xx0xx" to show that only the second and fifth cipher letters are within the prescribed distance
 (a maximum of 9) of their counterparts. Thus H and S are, respectively, 7 and 0 positions beyond

 the "a" and "s" of "Dacosta."

 Checking Possible Locations of "Dacosta" in the Gronsfeld

 Beginning at 1st cipher letter: x7xx0xx

 2nd 4x74x43

 3rd x9xx593 (9)

 4th 6x99x9x

 5th xxxxxx5

 6th 8xlxxx3

 A complete computer search reveals that only one of the 269 possible cipher sequences satisfies

 the Nines Condition. It is near the middle of the cryptogram, and it yields the printout

 1343251. (10)

 Now we know a sequence of key digits for the cryptogram, and we could begin deciphering
 letters even without knowledge of the keyword. However, since we know the key length to be 6, it
 is evident that the keyword is 134325, or else 343251, or 432513, or one of the other three cycled

 versions of (10) (without the repeated 1). We go back to the start of the cryptogram and try out
 these sequences on the first six cipher letters, finding very quickly that 432513 produces French.
 With the key sequence 432513, we then recover the original message. Displayed below, with
 punctuation and spaces between words, it is a dramatic confession that even nonreaders of French
 can fairly well interpret. Its remorseful author claims sole responsibility for the crime in question,
 and he clears the name of Joam Dacosta.

 Le veritable auteur du vol des diamants et de l'assassinat des soldats qui escortaient
 le convoi commis dans la nuit du vingt deux janvier mil huit cent vingt six n'est donc
 pas Joam Dacosta injustement condamne a mort c'est moi le miserable employe de

 l'administration du district diamantin, oui moi seul qui signe de mon vrai nom, Ortega.

 In La Jangada, Judge Jarriquez very nearly discovers the probable word method during his
 initial bout with the cryptogram, but after several hours he gives up in frustration. Next morning,
 when he learns that the writer might have been named Ortega, it finally dawns on him (!) He
 feverishly examines the end of the message (where any sincere declaration would bear a signature),
 derives the keyword, and just barely saves the life of Joam Dacosta. By virtue of this solution,
 Jules Verne is credited with the first published exposition of the probable word method for
 Gronsfeld ciphers.
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 I am grateful to the editors and a referee for their help in the preparation of this article and to Brian Winkel for

 valuable information and advice. I offer much-belated thanks to Chuck Oravec for introducing me to Kahn's The

 Codebreakers.
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 Proof without words:

 The arithmetic mean-geometric mean inequality

 b

 a

 b a

 (a+b)2 -(a-b )2 = 4ab

 a + b b
 2 -b

 -DORIS SCHATTSCHNEIDER

 Moravian College
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Perron's Result and a 
Decision on Admissions Tests 

Matrix theory is used to rank several options 

ED BARBEAU 
University of Toronto 
Toronto, Ontario, Canada M5S IA1 

Her decision had been indicated in an instant, but it had been 
made after days and nights of anguished deliberationi. She had 
kniown she would be asked, she had decided what she would 
answer, and, without the slightest hesitation, she had moved her 
hand to the right. 

Frank R. Stockton 
The lady, or the tiger? 

A choice between two options can be the result of "anguished deliberation." Still worse can be 
having to choose one of many courses of action. Factors to be considered are often contradictory 
in the options they indicate. Should one flip a coin or draw a straw? Generally, it will not do to 
consign the matter to a random device, which ignores whatever information and judgments that 
should be brought to bear. Rather, one would prefer to have at hand a technique which combines 
objectivity with an ability to cut through the confusion and uncertainty of ranking and weighting 
the relevant factors. 

This paper treats the analytic hierarchy process, developed by T.L. Saaty and described by him 
in a number of publications (for example, [7], [8], [9]). We will not go into the difficulties of 
ranking two possibilities, but will suggest a way in which pairwise rankings can be synthesized 
into an ordering of more than two options. Our example will be a problem faced by a typical 
university in the Province of Ontario: what is the best method on which to base the admission of 
students? 

Until the mid-60s, the province's education ministry operated the "departmentals," a universal 
system of high school graduation examinations whose results were virtually the sole criteria for an 
admission decision. When these were abandoned, the universities turned to grades assigned by the 
school and scores from aptitude tests. As you can imagine, when the aptitude tests in their turn 
were dropped, suspicions arose that marking standards in the schools were being relaxed. One 
indication was that government scholarships for high school graduates with at least an 80% 
average were awarded to 8% of the students in 1965 and 27% in 1981. Worse, there was evidence 
that the perceived inflation of grades was not uniform throughout the school system. Some 
students with high grades performed badly at the university level; perhaps they were preventing 
the admission of highly qualified students from more rigorous schools. As the government was 
deaf to entreaties to restore a universal and objective system of examinations, the universities were 
impelled to consider action on their own. 

Three suggestions were put forward: 

G: Continue to accept grades assigned by the high schools, but review individually those 
students with averages within, say, 3% of the cutoff point for admission, informally 
introducing whatever extra knowledge of the student or the school that might be available. 
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C: Calibrate the marks submitted by the high schools, adjusting upwards the marks from 
schools whose students have in the past performed better than average at university and 
downwards the marks from schools whose students earned university grades excessively lower 
than their school grades. 

E: Institute a system of admission examinations which all candidates are required to take. 
The question of choosing one of these options is governed by a number of considerations, not all 
of which lead to the same alternative. 
F: Fairness. The method should be equitable. Acceptance of raw high school scores seems to be 

most unfair. Even with hand review of individual cases, the quality of the information 
available is likely to vary widely. Calibration seems to be fairer, but it, too, is flawed. Some 
schools might have sent too few students to university to produce a reliable calibration 
factor. In any case, the calibration of a student's mark is based on the past and may not give 
due weight to changes, such as a new teacher or principal, which might rapidly alter 
standards. Admission examinations, which all candidates take on an equal footing, seem 
fairest of all. 

P: Predictability. One should have a fair indication of future success at the university. In this 
respect, it emerged from a 1977 study that the old provincial examinations were an 
indifferent indicator of future success and that, in fact, grades provided by the school were 
slightly better. Thus, it appears that we are doing about as well as possible, although some 
fine tuning might be possible through calibration or a cleverly designed objective examina- 
tion. 

L: Low cost. The method used should be economical and convenient to administer. Accepting 
high school grades involves a slight extra cost in considering borderline cases. There would be 
an initial expense in setting up a calibration formula, but once the system is in place, the 
calibration of marks can be closely linked with the entering of other admissions information 
and the continuing cost would be small. The cost of examinations is a much more serious 
factor. They must be prepared, administered, and marked, and the results would probably 
have to be entered into the data base at a time different than other admissions information. 
At least some of this might be offset by a candidate's fee, but this brings us to the fourth 
criterion. 

A: Acceptability. The method should be politically acceptable. Calibration is resented by some 
schools and teachers' organizations who see it as a rating of schools; despite assurances of 
confidentiality, they are concerned about the use made of a comparison of schools. While 
teachers might prefer, but not be enthusiastic about, admissions tests, their superiors are 
worried about the possible demands on time and resources to administer such examinations. 
Furthermore, universities which forego admission tests might attract students from institu- 
tions which require them. 

It is not clear which of the options G, C, or E should be adopted. Criterion F favours the 
third, but E is clearly inferior to the other two under criterion L. Option C is probably slightly 
favoured by P. As for criterion A, it points to G. Much depends on how seriously each criterion is 
taken. An eminent or wealthy institution could ignore A or L, while these criteria are significant 
to smaller and more impoverished colleges. Formulating a ranking of the four criteria and using 
this ranking to decide among the three options is a demanding task, for which some tools would 
be desirable. 

One such tool is the analytic hierarchy process (AHP). It is by no means the only seriation 
technique available (see, for example, [2], [3], [5], [11]); in fact, Perron's Theorem lies at the 
bottom of one method for ranking competitors in a round-robin tournament [6, p. 44]. However, 
this process is capable of allowing for a decision problem to be decomposed into several levels. At 
each level, there is a pairwise comparison of the options according to higher-level criteria which 
are melded mathematically into an overall ranking. In the present example, there are three levels. 
At the third level are the three choices to be ranked. However, because of the difficulty of arriving 
at an a priori ranking of these causes, one introduces a second level- the four criteria. The three 
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choices are assessed separately with respect to the four criteria; the four criteria are ranked with 
respect to the overall goal which constitutes the first level of the hierarchy; this leads to a blended 
ranking of the choices which takes into account all the criteria. 

The mathematical requirements for the AHP at this basic level are indeed modest. The matrix 
theory involved is accessible to a student in a first linear algebra course; the theorem that powers 
the engine is a result of Perron concerning eigenvectors of a matrix with positive entries, although 
in practice the necessary mathematical apparatus can be set up without a direct appeal to Perron's 
Theorem. All that is required of the user is the ability to make a comparison between two items; 
AHP then produces for him not only a ranking of the options but a measure of its reasonableness. 
Refinements of the process will endow it with the ability to respond to judgments changing over 
time and to criteria which not only are applicable to those of another level, but which feed into 
each other. However, the admissions problem will illustrate only the main line of the approach 
without these complications. 

How to weight several options 

Suppose we are given n options which have to be ranked in order of importance or 
significance: Q1, Q2,..., Qn. In the absence of some objectively determined property of the 
options, such as cost, it is difficult to come up with a ranking with confidence. We may be beset 
by second thoughts: should this pair really be ranked so far apart, or should that triple really be in 
that order? Our instinct is to look at the options a few at a time; but then it is difficult to get a 
synthesis. If it is a committee, rather than an individual, which is doing the ranking, the results 
can be anomalous. The members of a three-man committee might give individual rankings of 
three options as Q1l Q2, Q3; Q2, Q31 Q1; and Q3, Q1, Q2, respectively. On a majority vote for 
each pair, the committee as a whole would rank Q1 ahead of Q21 Q2 ahead of Q3, and Q3 ahead 
of Q1. To cope with this intransitivity, one should try to get some sense of whether the decision 
maker regards one option as being slightly, or significantly, better than another; in other words, it 
might be desirable to have some numerical measure of the superiority of one option over another. 
Even if the committee, with the help of a numerical scale and some negotiation, manages to avoid 
the snare of intransitivity, it may not be preserved from a milder form of inconsistency. While it 
might agree that Q1 is twice as important as Q2 and that Q2 is three times as important as Q31 it 
may well shrink from assigning Q1 six times the importance of Q3. 

To arrive at a procedure, let us work backwards. Suppose that we have actually succeeded in 
attaching to each option Qi a positive real number wi which measures its importance. Then it 
would be easy to deduce from this a measure of the relative importance of two of the options: Qi, 
with weight wi, can be regarded as being more important than Qj, with weight wj, by the factor 
aij = w,/w, (we make use of a convention here: if aij < 1, then Qi is actually less important than 
Qj; alternatively, we can say Qj is more important than Qi by the factor aji = wj/wi). It is 
reasonable to let aii = 1. We now form an n X n matrix A = (ai.) which has the following 
properties: 

(i) aii = 1, aij > 0, and aji = a-j for all i,j. 
(ii) a1ajk= aik for all i, j, k. 
(iii) The matrix A has rank 1, with each column proportional to the vector C = (wl, w2,.. ., wO1 

and each row proportional to the vector R = (w-1, w-1,. .., w, 1); 
(iv) 0 is an eigenvalue of A with multiplicity n - 1, and the trace of A is n; it follows from this 

that there is a remaining eigenvalue which is simple and equal to n; 
(v) C is a column eigenvector and R is a row eigenvector of A corresponding to the 

eigenvalue n. Thus, in this special case, our relative weighting of the options Qi appears in 
the form of an eigenvector corresponding to the largest positive eigenvalue of a matrix 
with positive entries. 

Imagine that we now perturb the entries aii of A. Its eigenvectors and eigenvalues will be 
correspondingly perturbed. However, if the perturbation is small, there will be an eigenvalue close 
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to n whose column eigenvector can be regarded as a pretty good approximation to the relative 
weighting of the Qi. This suggests that we can look at the ranking problem in this fashion: For the 
n options, there is an ideal but unknown weighting of their significance by an n-vector of positive 
real numbers. In order to discover this vector, we assign to each pair (i, j) a positive real number 
aij, which measures the relative importance of Qi and Qj. The two are equally important when 
aij = 1; Qi is more important than Qj exactly when a11 > 1. The only condition we impose on the 
assignment of the aij is the property (i) mentioned earlier. This is already a strong assumption, 
human psychology being what it is, as questions eliciting the relative importance of two options 
may draw quite different responses depending on how they are asked ([12]). A matrix A with 
entries aij satisfying (i) is called a reciprocal matrix. 

Suppose it turned out that, with brilliant insight, we managed to pick the aij to achieve 
condition (ii). (In this case, we say that the matrix A is consistent.) Then, the kth column is equal 
to a1k times the j th column, so that the rank of A is 1 and A satisfies (iv). Indeed, if 
(cl, c2,..., cX)' is any column and (rl, r2,..., rn) any row eigenvector with eigenvalue n, we have 
rjlri = ci/c; = ai,. Thus, the eigenvectors can be used to weight the options in a way which is 
consistent with our pairwise comparisons. 

In the case that A is not consistent, the situation is pleasantly satisfactory; A is subject to the 
following theorem. 

PERRON'S THEOREM. If A is a matrix with strictly positive entries, then A has a simple positive 
eigenvalue Xmax which is not exceeded in absolute value by any of its (complex) eigenvalues. Every 
(row or column) eigenvector corresponding to Xmax is a constant multiple of an eigenvector with 
strictly positive entries. 

This important result is treated in [1], [4] and [10] and is widely applicable in such areas as 
probability, numerical analysis, economics [1, p. 242], and demography. To get a rough idea of 
why this theorem holds, let (9 be the "positive" orthant consisting of all vectors in Rn which have 
nonnegative coordinates. Then A, considered as linear operator on R', maps (9 into a proper 
convex subset of itself; indeed, the positive halves of the axes of R' get mapped by A to rays in the 
interior of (9, and A(0(), the image of (9 under A, is the convex hull of these rays. The sequence 
{A7 (() A(A1 '(C9))} of successive images of (9 under A is a nested sequence of subcones of (9, 
each strictly smaller than its predecessor, which collapses down to a single direction as n 
increases. This direction determines an eigenvector of A with positive coordinates. Another way of 
looking at the result is to apply the Brouwer Fixed Point Theorem to the mapping 4 defined on 
the simplex of vectors in (9 the sum of whose coordinates is 1, where + (X) is that multiple of 
A(X) which lies on the simplex. 

If A is any reciprocal matrix containing our numerical judgments concerning all the pairs of the 
options Qi, let C be the positive column eigenvector for Xmax the sum of whose entries is 1; we 
can take the entries as measures of the relative importance of the Qi. While this is reasonable for 
consistent matrices, how much confidence can we have in the process for nonconsistent matrices? 
First, there is a ready alternative. -Instead of using the column vector, why not take the row 
eigenvector? We could form the reciprocals of its entries, normalize the vector obtained to make 
its entries add to 1, and use these to measure the relative importance of the Qi. In general, the 
result will be different. Secondly, if our matrix is far from being consistent, then this points to 
some unreasonableness in our original judgments and we can hardly expect to get from them a 
reliable weighting. The best answer to the first point is: yes, there are alternatives which we could 
use, but the method stands up to the rigours of field testing quite well. In fact, with a proper 
choice of scale, one can recapture from subjective judgments the relative illuminations (as 
measured by the inverse square law) of chairs at various distances from a light source, or the 
relative distances of cities [2, pp. 38, 41]; another model which actually places cities roughly in 
their proper places on a map is discussed in [5]. The recapturing is not exact, however, and one 
might expect to do as well using row rather than column eigenvectors. As for the second point, we 
shall see later that we can actually provide a numerical measure for the acceptability of our 
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judgment matrix. Thus, the method is self-correcting in the sense that we can know when we 
ought to subject our judgments to closer scrutiny and revision. 

How to balance different criteria 

As we saw in the discussion of the opening section, there may be several criteria with which to 
rank our options and these may point in different directions. To handle this situation, we first 
attach weights to the criteria, Cl, C2,..., C, using the method of the last section: suppose these 
are entries of the column vector Z = (z,, z2, ... Z)T, normalized so that its entries add up to 1. 

Now evaluate the n options according to each criterion in isolation. For the jth criterion, 
suppose the weights are the entries of the column vector (yij, Y2j ... ynj)T. An overall weighting 
of the options is found by taking a weighted average, using Z, of the weightings for the several 
criteria. In order that we actually do achieve the proper mix of the different criteria, the total 
weights for the column vectors for the various criteria should be the same; accordingly, we 
suppose that the column vectors (yij)T are normalized so their coordinates add up to 1. We then 
get a blended weighting (w1, w2,.. . w n)T of the n options with 

Wi = Yil Z + Yi2 Z2 + * * * + Yin Zn (I < i< n). 

Observe that w1 + w2 + + % = 1. More briefly, we can write W= YZ, where Y is the n X s 
matrix with entries yij. 

It is straightforward to generalize this to a more complex decomposition of the decision 
process, in which there are several levels of criteria, those at one level being judged according to 
the criteria at the next higher level. At the lowest level are the options to be considered; at the 
highest, the most general overriding criteria. For each pair of adjacent levels, we can form an r x s 
matrix whose s columns represent the weightings of the r lower-level criteria with respect to the s 
higher-level criteria. If Y1, Y2, ... , Ym are the matrices, with normalized columns, for each pair of 
adjacent levels from lowest to highest respectively, and Z is the weighting of the highest level 
criteria, the overall weighting of the options is given by a matrix product Y1Y2 ... Y,,, Z. 

Now let us turn to the university admissions problem. 

Applying the analytic hierarchy process 

The first task is to come up with a numerical measure of the various pairwise comparisons. 
This requires a scale sensitive enough to classify the importance of one choice over another as 
mild, moderate, strong, or overwhelming, but not so fine as to lead to spurious or uncertain 
determinations. After much experimenting, the most credible weighting of possibilities is found to 
be achieved by a nine-point scale of relative importance, described in TABLE 1 [7, p. 53]. 

The three options we have to decide among are G(accepting high school grades), C (calibrating 
grades) and E (requiring admission tests). The criteria to be applied are F (fairness), P 
(predictability), L (low cost), and A (acceptability). In order to rank the criteria, we make 
pairwise comparisons. Suppose we rate L as slightly more significant than P; then we can assign 
to the pair (L, P) the number 2, and to the pair (P, L) the reciprocal 1/2. On the other hand, 
assigning to the pair (F, P) the number 5 is an indication of our sense that fairness is much to be 
desired over predictability if we had to choose between them. A possible table of values, in which 
every entry measures the relative importance of the row variable over the column variable might 
be 

F P L A 
F 1 5 3 4 

DI1 1 1 

L5 1 2 3 

A 1 3 2 1 
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These entries constitute a 4 x 4 matrix with a positive eigenvalue which exceeds the magnitudes of 
all the other eigenvalues. We take the normalized column eigenvector for this eigenvalue for a 
relative weighting of the criteria. In this example, it is (0.543,0.085,0.213,0.159)T with eigenvalue 
4.14. Thus fairness is the most important criterion, followed by economy, political acceptability 
and predictability, in that order. 

Intensity of 
importance Definition Explanation 

1 Equal importance Two options contribute 
equally to the objective 

3 One moderately more Experience and judgment 
important than slightly favour one 
the other option over the other 

5 One essential or Experience and judgment 
strongly more strongly favour one 
important than the other option over the other 

7 One has very strong or One option is favoured 
demonstrated impor- very strongly over 
tance relative to the other the other; its domi- 

nance is demonstrated 
in practice 

9 Extreme importance The evidence favouring 
one option over the 
other is conclusive 

2,4,6,8 Intermediate between Useful when compromise 
adjacent scale values is needed 

Reciprocals If option i has one of above integers assigned to it when compared with j, 
of above then j has the reciprocal value when compared with i 

TABLE 1. A nine-point scale of relative importance. 

A rating of the three options, G, C, E, with respect to the four criteria, F, P, L, A, might give 
the four arrays shown in TABLE 2. 

F P 
How much fairer is the What is the gain in predicta- 
row choice than the bility by taking the row choice 

column choice? rather than the column choice? 
G C E G C E 

G 1 1/3 1/5 G 1 1/2 2 
C 3 1 1/3 C 2 1 3 
E 5 3 1 E 1/2 1/3 1 

L A 
How much more economical How much more acceptable is 

is the row choice than the row choice than the 
the column choice? column choice? 

G C E G C E 

G 1 3 6 G 1 5 4 
C 1/3 1 4 C 1/5 1 1/3 
E 1/6 1/4 1 E 1/4 3 1 

TABLE 2. Ratings of the three options G, C, E with respect to the four criteria F, P, L, A. 
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The eigenvalues and eigenvectors of the matrices in TABLE 2 corresponding to the four criteria 
are the following: 

eigenvalues: F 3.03 P 3.01 L 3.05 A 3.09 

G 0.105 0.297 0.644 0.674 
eigenvectors: C 0.258 0.540 0.271 0.101 

E 0.637 0.163 0.085 0.226 

Thus, two criteria favour accepting raw grades, one criterion favours calibration and the 
remaining criterion favours examinations. However, the criterion favouring examinations has the 
most importance. A matrix multiplication gives the overall weighting of the three options: 

0.105 0.297 0.644 0.674) 0.543 0.327) 
0.258 0.540 0.271 0.101 0.085 0.260 
0.637 0.163 0.085 0.226 0.213 0.414 

The relative weights attached to grades, calibration and examinations are, respectively, 0.327, 
0.260, and 0.414, so that having examinations is the preferred option. Despite their high cost, the 
perception that they enable the fairest admission process is conclusive. Now, of course, if our 
judgments change in any respect, then there will be a corresponding change in at least some of the 
matrices, resulting in a different weighting. 

While the figures obtained in a subjective situation such as this are not as compelling as figures 
arising from a physical or engineering application of mathematics, nevertheless there is consider- 
able value in going through the process. We have to isolate the important ingredients in the 
situation and then systematically assess their relative importance. Secondly, the figures themselves 
encourage us to review our analysis. We have gained a sense of the mechanisms which lead to our 
weighting. If the weights produced by the process are not in accord with our preconceived notions, 
we are encouraged to check the validity of our assessments along the way and rethink the whole 
situation. Either there is some factor which we did not take into account, or else we were a little 
extreme in some of our judgments. 

Row vector versus column vector 

Our earlier discussion indicates that it would be equally reasonable to take either the column or 
the row eigenvector of the reciprocal matrix in determining the relative weights of several options. 
In this section, we pursue a modest exploration of this question and find that, indeed, the two 
methods do not always yield the same ranking. To establish notation, let X denote the Perron 
eigenvalue of the reciprocal matrix A, let C denote one of its positive column eigenvectors, and R 
one of its positive row eigenvectors. Let R' be that column vector whose entries are the reciprocals 
of the corresponding entries of R. The row and column eigenvectors will yield exactly the same 
weighting if and only if C and R' are proportional. For any positive vector X, let X denote the 
normalization obtained by dividing each entry of X by the sum of all the entries; thus, the entries 
of X add up to 1. 

A 2 x 2 reciprocal matrix is trivially consistent and the row and column eigenvectors give the 
same weighting. Let us suppose that A is the 3 x 3 matrix 

I u v 

with u, v, w all positive. Each column of A can be interpreted as measuring the relative 
significance of three options with respect to a fixed one. One might then expect that the overall 
weighting of the three options would be some kind of mean of the three columns. Keeping in mind 
the possibility that the row eigenvector and the column eigenvector give the same weighting when 
R' is proportional to C, we are led to examining two geometric mean vectors: 
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( u1/3v1/3 U- 1/3w1/3 V-1/3 w- 1/3)T, 

a column vector whose entries are the geometric means of the entries of the corresponding rows of 
the matrix, and 

(U 1/3 3, u1/3 W- 1/3 v1/3w1/3) 

a row vector whose entries are the geometric means of the entries of the corresponding columns of 
the matrix. Both of these turn out to be eigenvectors with eigenvalue 1 + y + y- 1, where 
y = u1/3v-1/3w1/3. That this is the Perron eigenvalue can be seen from the fact that the 
characteristic polynomial of A, which is 

( )3- 3(1 - x) + (y3 +y-3) = (1-x + Z)[(1 -X) - Z(1- X) + (Z2 -3)] 
with z = y +y1, has one real root 1 + z and two imaginary roots (except when y = 1 and x =- 1 
is a double root). Thus, when A is a 3 x 3 matrix, C and R can be determined by taking geometric 
means and thus give the same weighting. 

We turn to the 4 x 4 case, and let G denote the column vector whose entries are the geometric 
means of the rows of A and H denote the row vector whose entries are the geometric means of the 
columns of A. From the reciprocal property of A, it follows that G and H' are proportional. The 
situation is now more interesting. For example, let A have the special form 

1 u v w 
u-i 1 t v 
V-1 t-1 U 
W- v- U- 

with all entries positive. For such matrices, the row and column eigenvectors are simply related; if 
C = (a, b, c, d )T, then it is easy to see that R = (d, c, b, a) is an eigenvector. In fact, for suitable 

Xa = a + bu + cv + dw 
Xbb=au-' +b+ct+dv 
Xc=av-1 + bt-1 +c+ du 
Xd= aw-1 + bv-1 + cu-1 + d. 

Suppose that R' is proportional to C. Then ad = bc. Setting p = ub/a = ud/c, q= wd/a, 
r = tc/b, and s = vc/a, and equating four different expressions for X, we obtain 

1 +p+s+ q=p-1 + 1 + r +s=s-1 + r-1 + 1 +p 

= q-, +s-I +p-1 + 1, 
which is equivalent to 

p_p1 =r-q= r -q and = 1-qr_ = -qr 
rq r q 

Either r = q, in which case it follows that w = tu2, or else rq = 1, in which case it follows that 
V2 = wt. 

Conversely, suppose that in the matrix A, it turns out that w = tu2. Then, G is a column 
eigenvector with eigenvalue X = 2 + v/ut + ut/v, so that R' and C are proportional. On the 
other hand, if v2 = wt, then G is an eigenvector with eigenvalue 

X = 2 + ( u1/2t1/4/w1/4 ) + ( w1/4/ul/2 t1/4 )) 

so that again R' and C are proportional. 
To see what happens when both the conditions w = tu2 and V2 = wt fail, consider the special 

case u = v = t = 1. Then X satisfies the equation 
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V-4X2- 2(w + w-1-2) = 0. 

For R', G, and C, we can take, respectively, 

A? - 2X w1/4 2(X - 1 + w) 
2(X -1I+ w1) W 

1 ~ ~~ -1/1 \2 -2X w-1/4 2(,- 1 + w-) 
2(X-1+w) W?-2 

These will, in general, differ. It might be suggested that, although the actual relative weights differ, 
the rankings induced by R' and C are the same. However, even this is not so. Consider the 
following example, designed to give G = (1,1,1, 1)T: 

1 5 2 0.1) 
A= 0.2 1 2.5 2 0.5 0.4 1 5J. 

10 0.5 0.2 1 
In this case, Xmax = 8.02, 7C= (0.22,0.19,0.26,0.33)T, R = (0.33,0.26,0.19,0.22), and R' = 
(0.18,0.23,0.31,0.28)T. The column eigenvector ranks the four options in the order 4,3,1,2, while 
the row eigenvector ranks them in the order 3, 4, 2,1. Here, one has to be careful in coming to a 
conclusion. However, in this example, the fact that the Perron eigenvalue far exceeds the trace of 
the matrix gives us pause, as we shall see in the next section. 

One has the sense that, in the general case, the vector G has an interesting role to play. In 
particular, it would be of interest to compare G with R' and C in the case when R' and C are 
proportional. 

Consistency 

A critic of the AHP method of ranking might complain that the pairwise comparisons that 
went into the matrix A could be wildly out of line. To take an extreme case, the option pairs 
(P, Q), (Q, R), (P, R) might be rated 3, 5, and 1/2 respectively, so that P is somewhat more 
important than Q, Q considerably more than R, while, in a direct comparison, P is less 
significant than R. While a thoughtful assessment is not likely to produce such an extreme 
anomaly, nevertheless, some inconsistency is bound to occur. Fortunately, there is a mathematical 
way of getting a handle on the situation. 

If we review the case that A is a 3 x 3 matrix, we see that the Perron eigenvalue 1 + y + y- is 
always at least 3, with equality exactly when y = 1. But this condition is equivalent to uw = v, 
which in turn characterizes the consistency of the matrix A. Thus, the largest eigenvalue of A 
exceeds 3 if and only if the matrix is not consistent, and equals 3 otherwise. 

More generally, suppose that A = (aij) is an n X n matrix with positive entries satisfying 
aij = l/aji. Then, if Xmax is its eigenvalue of maximum absolute value, XmaX > n, and A is 
consistent if and only if Xmax = n. The proof of this is pleasantly straightforward, and worth 
including here. Let (wI, w2, .. ., w n)T be any positive column eigenvector with eigenvalue X = X ma, 
Then, for 1 < i < n, 

n 

XC aijwjwi-l 
j=1 

Summing these equations over i yields 

nX = aijwjwi-1 = aijwjw 1 + n, (1) 
i,j i1j 
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taking account of a1 =1. With yij =ai^wi 7, we have y =Y1, so that equation (1) can be 
written 

nX= ? (yij+?Y;) +?n. (2) 

The sum in (2) is taken over (2) = (1/2) n (n - 1) terms, so that the right-hand side is at least 
equal to 2((1/2)n(n - 1)) + n = n2, with equality if and only if each yij = 1, in other words, if 
aij = wi/wj. But this characterizes the consistency of A, and the result follows. 

Thus, the difference Xmax - n can be regarded as a measure of consistency. Since the sum of all 
the eigenvalues of A is n (the trace of A), X - n is the negative of the sum of the remaining 
eigenvalues of A. The average of these eigenvalues is - I, where 

X-n 
y n-1~ 

This is the consistency index of A. If t is too large, then the process is likely to be defective and 
the judgments made should be reviewed. In practice, one judges p to be satisfactory if it is no 
more than about 10% of the mean consistency index for a sample of 500 randomly generated 
matrices satisfying aij = aji with entries drawn from the set {1/9,1/8,...,1/2,1,2,...,9). In 
the table below, the first row gives the order of the matrix and the second row the random mean 
consistency index: 

n: 1 2 3 4 5 6 7 8 9 10 
,u: 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

In the admissions example, the 4 x 4 matrix has consistency index 0.14/3 = 0.05, less than 10% 
of the random consistency index, which is 0.90. The consistency indices of all the 3 x 3 matrices in 
that example are also well within the acceptable range. However, the 4 x 4 matrix of the last 
section which produced different rankings from the row and column eigenvectors has consistency 
index 4.02/3 = 1.34, which is poor. It would be interesting to investigate how strong is the 
connection between the consistency index and the coherence of the row and column rankings. 

Conclusion 

We pursued the admissions procedure example on the assumption that the criteria and options 
could be organized into a hierarchy in a cut and dried way, and that at each level, we could take 
each criterion in isolation from the others. However, life is usually more complicated than this. 
Often, the criteria used might be interrelated. For example, the fairness of an admissions 
procedure would to some extent be governed by its predictability and cost (especially if the 
candidates were charged a fee); political acceptability might also hinge on other factors-if the 
procedure is perceived as fair, it would be much easier to swallow by all concerned. One way to 
handle this would be to introduce into the hierarchy an extra level in which the four criteria 
F, P, L, A are weighted with respect to each of the same four criteria. These could be combined 
(by means of a matrix multiplication as indicated earlier) with the preliminary weightings of G, C, 
and E in terms of the criteria. More complex situations will involve a nonlinear sort of hierarchy 
in which components of the criteria will affect each other in either direction. These complications 
are taken up, with examples, in [7] and [8] (see [7, chapter 8, pp. 206-222] for a detailed discussion 
of how to handle a system with feedback). 

AHP is capable of considerable refinement to cope with the complexity of a situation for which 
a decision is required. Built into it is the capacity to adjust conveniently one's ranking of options 
to new judgments and new pieces of information, whether slight or significant, as well as a 
warning bell in the form of the consistency index. AHP has been used in many practical situations 
of industrial or government policy, and has been used to second-guess Britain's going to war over 
the Falkland Islands, [9]; it has also been the focus of experiments in which the conclusions are 
subject to independent checking [7, pp. 38-42]. 
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As for the question of admissions policy, what was decided in the end? Actually, at the time 
this was written, the end had not yet come. The government is winding up a substantial revision of 
the curriculum, and the Minister of Education has opened the door to the possibility of the 
province restoring some form of universal testing of high school graduates. A government 
commission looking into the universities has also recommended tests. All this has had the effect of 
bringing to the fore another criterion, "sensitivity to political instability." On this basis, it was 
perceived that the universities would be foolish to embark on an elaborate new venture while 
matters are still quite unsettled. For the time being, nothing will change. 

The author warmly thanks T. L. Saaty for introducing him to the analytic hierarchy process and suggesting an 
expository paper. He would also like to thank Prof. Saaty and the referees for their helpful advice and a number of 
the references. 
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Continued Roots 

WALTER S. SIZER 
Moorhead State University 
Moorhead, MN 56560 

Examples of infinitely nested roots appear from time to time in the literature and as problems 
to be considered. One instance was the problem presented by Ramanujan in the India Journal of 
Mathematics (see [4]) and later converted to problem A6 of the 1966 Putnam Examination, where 
the contestant was asked to "Justify the statement that 

3= /1?2\/1?3 1+4?4 1+5 1 

(see [16]). Another similar Putnam Examination problem was rephrased as a problem in this 
MAGAZINE in May, 1983 (for the problem and solution, see [12]). Other problems involving nested 
radicals are given in [10], [11], and [17]. There seems to be little general theory for nested radicals, 
however, and even no uniformity as to form or notation. This situation contrasts sharply with the 
case of other infinitely repeated operations (infinite series, products, and continued fractions), 
where the abstract theory is well documented in the literature. In this note we will consider certain 
infinitely nested roots and derive a few general results. 

Our goal will be to consider what we shall call a continued (square) root, by which we shall 
mean an expression of the form 

ao+j(al+?(a2?+j(a3?+j(a4+ )))), (1) 

where the a 's are numbers. Familiarity suggests we limit ourselves to the case where the ai 's are 
real numbers, with ai > 0 for i > 1, or even be more restrictive and require the ai's to be integers. 

Several questions about continued roots present themselves naturally at this point-in fact, 
they are precise analogues of familiar questions posed for series, products, and continued 
fractions. Some of these are: 

(1) What does it mean for a continued root to converge to a number L? 
(2) What conditions on the ai 's guarantee convergence of the root? 
(3) What numbers can be represented by continued roots? 
(4) Is there any uniqueness to such representations? 
(5) What numbers are represented by "terminating"9 or "repeating" continued roots? 

In our exploration of continued roots in this paper we shall give at least partial answers to the 
above five questions. 

Definition and Convergence 

For ease in notation we will denote the continued root in (1) by j(ao, a1, ... ), and we write 
Lil = V((ao,..., a,2) for the continued root truncated after a,,. Patterning our definition after what 
is done with infinite sums and products and with continued fractions, we define 

j(a0, a,,...)= lim Ln, 
tf -_ 00 

provided the indicated limit exists. 
One would like at this stage to identify circumstances under which the above limit exists. In the 
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event that the a 's are all nonnegative real numbers for i >? 1, the truncations L1 will form a 
nondecreasing sequence of real numbers; hence the sequence { Li } has a limit if and only if the 
L 's are bounded (see, for example, [3], p. 16). 

One case where the L 's are bounded is the case in which the ai's themselves are bounded. 
Suppose, for example, that ai < B for all natural numbers i. We may safely take B to be greater 
than or equal to 2, and so ai < B < B(B - 1). Then it is easy to see that 

Li < ,V(ao, B(B -1),.. B(B -1)), 
where there are i terms B(B - 1). But 

L1 < a0 +? B(B - 1) < ao +? B2 = ao + B; 

L2 K aao + V(B(B - 1) + v(B(B - 1)) < ao + (B(B - 1) + VB2) 

=a0 + V(B(B - 1) + B) =ao + VB2 = ao + B. 

Continuing in this manner (or, rather, using a proof by mathematical induction) we get that 
Li < ao + B, regardless of the index i. We have thus established the following 

PROPOSITION. If { ai } is a bounded sequence of real numbers and if ai is nonnegative for i > 1, 
then j(aO, a,,...) converges. 

This first result is far from the best result one can get for convergence of continued roots, but it 
is a start. Naively, the next step might be to proceed as follows: suppose a,, a2,... are 
nonnegative real numbers with i(ao, a,,...) = L, and suppose M> 0. Then 

ML= M(ao + V(al + i(a2 + - . - ))) = Mao + M1(al + V(a2 + -)) 

= Mao + V (M2a, + M2 V(a2 + * * )) = Mao + (M2ai + V(M4a2 + M41(a3+* ))) 

= Ma0 ? j(M2ai + j(M4a2 + j(M8a3 ? ... = j(Mao, M2a ,-., M2ai, ). 

A careful examination in terms of limits shows that this procedure is indeed legitimate! Using the 
sequence ai = 1 and M = 2 gives a convergent continued root for which the terms of the root are 
unbounded. 

One might speculate that all continued roots with ai > 0 for i > 1 converge (such a result does 
hold, after all, for continued fractions-see, for example, [9], p. 67). However, such is not the case, 
and in fact one gets the following. 

THEOREM. Suppose ai is realfor all i > 0 and that ai > 0 for i > 1. Then j(aO, a1,...) converges 
if and only if the set 

S= {2Vai: i>1} 
is bounded. 

Proof. If: Suppose S is bounded by a number B. By the observation before the statement of 
the theorem, then, V(ao, a,,...) = BV(a'o, a',,...), where 0 < a'i < 1 for i > 1. The Proposition 
tells us that i(a'0, a'1,...) converges, and hence V(ao, a,,...) converges. 

Only if: Suppose now that S is not bounded. Thus for any real number B there exists an N 
such that 2Nv(aN)> B. We wish to show that { Li } diverges, that is, that it increases without 
bound. Thus we want to show that for any B there exists a number N > 0 such that L,, > B for 
n> N. Since the L 's form a nondecreasing sequence it suffices to find an N such that LN > B. 
Let B be given, and let N be such that 2 aN) > B. A simple check then shows that 
LN > 2( aN)> B. 

Representing numbers as continued roots 

Once the question of convergence is settled one can "solve" some continued roots-particu- 
larly those with certain repeating patterns. We illustrate the technique with two examples. Note 
that it was important to settle the convergence question first, in order that our assumption that we 
can write L = V(ao, a1,...) be justified! 
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EXAMPLE. Let L = j(O,1,1,1, ...). Then L = j(1 + ?(1 + ?(1 + * * ))), so L2 = I + V(1 + V(1 
+ * - *)), or L2 = 1 + L. Solving, we get L2- L - 1 = 0, so L = (1? _ (1 + 4))/2; since L > 0 we 
get L = 1/2 + j5/2. This number is the "golden ratio" of the Greeks (see, for example, [9], p. 82). 
In fact, this example is just a special case of the more general formula 

n = V(0, n(n -1), n(n -1,.) 

which can be shown to hold for any number n > 1. 

EXAMPLE. Let L= j(1 + ?(7 + ?(1 + ?(7+ * * * )))). Here L2 =1 + (7 + (1 + (7 ***))), so 
L2 _ 1 = 1(7 + ?(1 + ?(1 + ( * * ))), (L2 - 1)2 = 7 + ?(1 + ?(7 * )) = 7 + L, or L4-2L 2- L- 
6 = 0. By Descartes' rule of signs (see [14], vol. II, p. 471) this equation has one and only one 
positive root, which is L. By inspection, this root is 2, so L = 2. 

These examples point to answers to two more questions about continued roots. The technique 
used to solve for the roots in the examples can be used to show that any terminating or repeating 
continued root represents a root of a monic polynomial of degree 2' for i > 1; in case the entries 
ai in the root are all integers, the root represents a root of a monic polynomial over the integers. 
The second observation to be made based on the examples is that there may be several distinct 
ways to represent the same number as a continued root. Thus, 2 can be represented j(2, 0, 0, 0,...); 
j(O,4,0,0,...); j(O,2,2,2,...); or (O, 1,7,1,7,...). 

The question remains of which real numbers can be represented by continued roots; for 
example, can iT or 3j9 be so represented? If we use real numbers in our continued roots we can of 
course represent any real number. For example, if x is nonnegative, x = j(O, x2, 0,0,...). Thus 
this question really concerns just the case where the ai's are integers. 

Let x be any number, and suppose we want to write x as j(ao, a,,...). If any of the numbers 
a1, i > 1, are nonzero, necessarily nonnegative integers, then we will have x = a0 + r, where r > 1. 
Thus if we are choosing ao, we should choose it to be less than or equal to x - 1. Let us choose ao 
to be the integer so that x is in the interval (ao + 1, ao + 2]. A similar analysis shows that if ai > 0 
for any i > 2, then x = ao + j(al + r), where r > 1. Thus we might choose a1 so that x is in the 
interval (ao + j(al + 1), ao + j(al + 2)]. Note that since j(al + 2) < 2, a1 is 0, 1, or 2. We can 
continue this pattern: assuming x is in the interval (j(ao, a1,..., ai + 1),j(ao, a1,..., ai + 2)], 
choose ai+l so that x lies in (j(ao, a,,..., ai+1 + 1),j(ao, a,,..., ai+1 + 2)]. Again, note that 
ai+1 is 0, 1, or 2 for i > 0. 

The continued root j(ao, a1,...) we get in this manner converges by our first proposition. We 
would like to know that, for any choice of x, the value L of our continued root is equal to x. 
Since for each truncated root Li we know that x > Li, we conclude that x > L. To prove that 
x = L, we need to show that x cannot exceed L. We do this by assuming that x - L = E > 0, and 
obtain a contradiction. Assume x - L = E> 0. Since the L 's converge to L, we can choose an i so 
that L - Li < e/2. Also we know that x is in the interval (j(ao, a1,..., ai + 1), j(ao, a1,..., ai + 2], 
which we shall denote by (A, B]. We express what we know graphically in FIGURE 1. (Note that 
we use two number lines in FIGURE 1, not necessarily intended to have uniform scale, as we do 
not yet know how A and L compare.) 

< ?/2? 

Li L x 

A-Li x-A 

Li A x 

FIGURE1 
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We complete the proof in essentially two steps. First, we show (i) that A - Li > B - A. From 
this it will follow, since B - A > x - A and x - Li > , that a - Li > e/2, so A > L. We then 
prove (ii) that there is an n with L,, > A; it then follows that L,, > L, which will contradict the 
fact that L is the limit of the nondecreasing sequence { Li }. 

To show (i), that A-Li > B-A, consider the function f (x) = V(ao, a, .. ., ai -1x+ 1) - 
j(a0, a,,. . ., ai-1, x). Straightforward computation shows that f'(x) < 0 for x > 0, and thus that 
f(x) is decreasing on [0, oc). Thus f(ao) >f(ao + 1); but this is the statement that A - Li > B - A. 

Now we show that (ii) there is an n with Ln > A. By inspection, if for any k > i, ak = 0, then 
Lk > A = j(ao, a,,..., ai + 1), so the only way we can have no L,, > A is to have a,, = 0 for all 
m > i. But by construction, x > A, that is, A = j(ao, al,. * *, ai + 1) < x < j(ao, a,,..., ai + 2). 
Since limj o2'J2 = 1, there is a k such that j(ao, a1,..., ai + 2k2) < x. But in this case, even if aj 
were 0 for j = i + 1,..., i + k - 1, ai+k would be at least 1 by construction and we would have (in 
any case) Li+ k> A. This was what we needed to complete the proof of the following. 

THEOREM. Any real number can be represented as a continued root V( aO, a,,...,), where the ai's 
are integers and for i > 1, ai is 0, 1, or 2. 

ExAMPLE. We will illustrate the construction outlined above to get the first several entries in a 
continued root expansion of 3j9. Recall that our rule is to choose each ai so that 

(ao, a,,. .., ai + 1) < x< V(ao, a,,..., ai + 2). 
The computations will be done using a calculator; thus we get x = 39 2.0800838. Since 
2 < x < 3, ao must equal 1. To determine a,, note that 

1 + jl = 2, 

1 + j2 2.4142136, 

so al = 0. Continuing, 

I + V(0 + VI) =2, 
1 + V(O + V2) 2.1892071, 

so a2 = 0; 

1 + ?(0? + (0 + I)) =2, 
1 + V(O + V(O + V2)) 2.0905077, 

so a3 = 0; 

I + V(0+ V(0+ V(0+ VI))) 2, 
1 +? (0 +? (O ?+ (O ?+ 2))) 2.0442738, 

1 + j(0 + V(O + V(O + ?3))) 2.0710755, 

1 + j(0 + V(O + V(O + A4))) 2.0905077, 

so a4 = 2; 

1 + j(0 ?+ (0 + j(0 + j(2 + jI)))) = 2.0710755, 

1 + j(0 ? j(0 ?+ (0 + j(2 + j2)))) = 2.0797685, 
1 + j(0 + j(0 + j(0 + j(2 + j3)))) = 2.0857922; 

so a5=1. 
Evidently our calculator would allow us to go a few more steps, but we would be limited by our 

seven-place accuracy. At any rate, there will be a continued root representation of 3y9 which 
begins j(1,0,0,0, 2,1,...). 
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Notes on references 

One other, older reference to continued roots in the literature is in Frangois Viete's formula 

2/7= ?'-V' V ? ?( V'+V) . 2/T=v (2+2 2 2 )2 / 2 +2 / 2 2 2))**- 

published in 1593 ([2]; also [1] and [14], vol. I, p. 312; see [15] for a proof of the formula). While 
the formula is an infinite product of finite continued roots, its convergence does imply that 
j(O, 1/2,1/8,1/128,...) = 1. Many introductory calculus texts treat infinite series, as do several 
special books devoted to just that topic; see, for example, the books by J. A. Green ([3]) and 
James M. Hyslop ([6]). Such treatments of infinite products are harder to find, but the interested 
reader is referred to the appropriate sections of books by Hirschmann ([5]) and Knopp ([8]). 
Continued fractions are discussed in books by Khinchin ([7]) and Olds ([9]), and in the article by 
Richards ([13]). The development of continued roots presented in this note and the questions 
addressed parallel the usual approaches to series, infinite products, and continued fractions, and 
reinforce concepts of convergence seen in these more conventional areas. 

The author is indebted to Edward J. Allen of the University of North Carolina at Asheville for providing several 
references. 
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 A Surprise from Geometry

 Ross A. HONSBERGER

 University of Waterloo

 Waterloo, Ontario, Canada N2L 3G1

 It is patently obvious that two vectors in the plane (all vectors are considered to issue from the
 origin), which meet at an angle that does not exceed a right angle, can be spun around the origin
 so that both vectors lie in the nonnegative quadrant (that is, the endpoint (x, y) of each vector has
 coordinates which are both nonnegative). It is not quite so obvious that a set of 3 vectors in
 3-space, which in pairs meet at angles not exceeding a right angle, can always be spun around the
 origin to lie in the nonnegative octant. It is not at all obvious, but is also true, that any set of 4
 vectors in 4-space, no 2 of which meet at an angle greater than a right angle, can be arranged to lie
 in the nonnegative orthant (orthant is the general term for quadrant and octant).

 At this point, who can resist the conjecture that any set of n vectors in n-space, no 2 of which
 meet at an angle exceeding a right angle, can be rotated to a position so that all the vectors in the

 set are contained in the nonnegative orthant? Isn't it surprising that this is false for every n > 4?

 We shall see that the set S, consisting of the five 3-dimensional vectors i = (1, 0, 0), j = (0,1, 0),
 i + k = (1, 0, 1), j + k = (0,1,1), and i + j - k = (1,1, -1), cannot all lie in the nonnegative orthant
 of a space of any dimension.

 z

 kl w~~j+k

 i+k j V

 / 1~~0

 x

 I
 1' i+j-k
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 First of all, it is easy to check that each pair of vectors in S meets at an angle not exceeding a

 right angle, and a glance at the figure shows that they fan out too far to fit into an octant of

 3-space. We shall establish our general claim by arguing to a contradiction. Suppose, then, that in

 some n-space, our set S can be accommodated completely within the nonnegative orthant. Then
 the coordinates of each vector in S are all nonnegative. Since S does not contain the zero vector,
 none of these n-tuples of coordinates will consist entirely of O's; in each case, at least one
 coordinate must actually be a positive number.

 Now, the crux of our argument consists in showing that the positioning of S in the nonnegative

 orthant necessarily also brings into this orthant the companion vector k = (0, 0, 1), even though it
 does not belong to S.

 While each coordinate of a vector in S is either positive or zero, a coordinate in the description
 of k's position may presumably be positive, zero, or negative. Let us investigate the feasibility of a
 negative coordinate in k. If k were to have a negative coordinate in a component in which the
 vector i has a zero, then that component in their sum i + k would have a negative value. But, since
 i + k belongs to S, no component of i + k is negative. Consequently, k can have a negative

 coordinate only in a position in which i has a positive coordinate (recall that the coordinates of i
 are either positive or zero). Similarly for the vector j: a negative component in k, opposite a zero
 in j, would yield a contradictory negative component in the vector j + k of S. As a result, k can
 have a negative coordinate only in a place in which both i and j have a positive coordinate.

 But there are no such places! If there were, such a pair of positive coordinates would contribute

 a positive amount t to the dot product i * j. However, since i and j are orthogonal, we have i * j = 0
 in every coordinate system, yet there would be no way to nullify the above contribution t because

 there are no negative coordinates in any vector of S (in particular, in i and j). It follows, then, that

 k possesses no negative coordinates and must also reside in the nonnegative orthant.
 Now we can conclude easily. Since both the vectors k and i + j - k have no negative

 coordinates, their dot product k* (i + j - k) cannot be a negative number. However, obvious
 orthogonalities yield

 k (i + j -k) =k i + k j - k . k

 = 0+ 0 - Ik12,

 which is negative, since k is not the zero vector, and the argument is complete.

 This argument is due to the Israeli mathematician Moshe Roitman of the University of Haifa;
 it was most kindly communicated to me by his colleague Joe Zaks during his recent visit to

 Waterloo (summer, 1984). He also noted that L. M. Kelly and Shreedharan of Michigan State

 University in East Lansing had a similar example of a set of 5 vectors which lent itself to an easy
 argument based on inner products.

 Proofs of the cases of vectors in 3-space and 4-space can be found in [1]. It is interesting that

 the concluding remark in this paper is an example of 8 vectors that need a space of at least 9
 dimensions for their accommodation in the nonnegative orthant.
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A Transfer Device for Matrix Theorems 

WILLIAM P. WARDLAW 
U. S. Naval Academy 
Annapolis, MD 21402 

Our title refers to a method for obtaining a number of results for matrices over arbitrary 
commutative rings by " transferring" the corresponding results for matrices over the real numbers. 
The technique was suggested by a proof [5] in a calculus text which showed det(AB) = 
(det A)(det B) for A and B nonsingular, and then extended the result to singular A or B by 
continuity. More or less, the technique described in this note is an algebraic substitute for the use 
of continuity which can serve as a rigorous replacement for waving the hands and stating "For 
commutative rings, everything goes through as for fields." The existence of the transfer device 
obviates the need to do undergraduate linear algebra over commutative rings and suggests that a 
restriction to the field R of real numbers (or perhaps the field C of complex numbers) will suffice, 
since many results can be " transferred" to more general settings in a graduate course. 

Throughout this note, R is an arbitrary commutative ring, R"'X" is the collection of all m x n 
matrices over R, Rn = RnlXn, and R[t] is the ring of polynomials over R. Here, R[t] is considered 
to be the ring formally generated by t and R, containing R as the constant polynomials and all of 
the powers tk for positive k, even if R does not have an identity 1. Finally, 

M(R, t)= U R[t]rmxn 
m, n E N 

is the partial algebra of all elements of R = R1, all polynomials in R[t]= R[t]1, and all matrices 
with entries in R[ t]. The two operations + and in M(R, t) are ordinary matrix addition (with 
A + B defined when A and B are the same size) and matrix (or scalar) multiplication (with A * B 
defined when A is m x n and B is n x p or when either A or B is 1 x 1). The phrase partial 
algebra refers to the fact that the operations are not always defined. 

Recall that the determinant of a square matrix A = (aij) in M(R, t) is 

det A = E (sgn a) a,,1a202 ... 
a,,n, 

a E S, 

The characteristic polynomial of A in R,, is fA =IA(t) = det(tI - A), and the (classical) adjoint or 
adjugate of A is Adj A = CT, the transpose of the cofactor matrix C = (cii), where cij= 
(-1)'+jdet A (iI j) and A(iIj) is the matrix resulting from A by deleting the ith row and the jth 
column. 

The transfer device and applications 

TRANSFER THEOREM. Let R and R' be commutative rings and 0: R R' be a ring homomor- 
phism. Then 0 induces a homomorphism 

0: M( R, t) ---M( R', t) 
satisfying: 

(1) ( (a) = 0(a) for every a E R, 
fl ln 

(2) (Z ait0)= E 0(ai)t' for ao, a,,..., a,, E R, 
i=O i=O 

(3) A =(aij) E R[t]mxn implies 'k(A)= (=(aij)), 
(4) 4(A + B) = (A) + 4 (B) when A + B is defined, 
(5) 4 (A * B) = 4 (A) - . (B) when A - B is defined, 
(6) 4(det A)= det(4A) when A is square, 
(7) k(fA) = fh(A) when A is square, and 
(8) 4 (Adj A) = Adj (4.A) when A is square. 
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The proof of the Transfer Theorem is not difficult: we define 4 by properties (1)-(3) and then 
prove properties (4)-(8). It is clear that 4 is well defined by properties (1)-(3). The proof of 
properties (4) and (5), which show that 4 is a homomorphism, is straightforward but tedious, and 
hence is omitted. Properties (6)-(8) then follow because det A, the coefficients of fA, and the 
entries in Adj A are all polynomials in the entries of A. 

Throughout the remainder of this note applications of the Transfer Theorem will be demon- 
strated by using it to prove, first, some very well known theorems about determinants over 
commutative rings and, later, some less well known theorems. 

THEOREM 1. If A and B are square matrices over a commutative ring R, then 

det( AB) = (det A)(det B). 

Proof. Let A = (aij) and B = (bij) be n x n matrices over the ring R. Then let A = (A, B) 
(alD b.annSbl,. .bnn) be the subring of R generated by the entries of A and B. Let 
X = (xij) and Y = (yij) be n x n matrices over the field R of real numbers with 2 n2 independent 
transcendental entries xij and yij in R\Q. Then let K= Q(X, Y)--Q(x11,..., x,,, Y, .. Ynn) 
be the 2n2-fold transcendental extension of Q, and let X = (X, Y) = (x,... , x,nn , . Yn) 
be the subring of K generated by the entries of X and Y. Since the transcendentals xij and y 
are algebraically independent over Q, they generate a free commutative ring (that is, the free 
algebra over the class of all commutative rings, with the free generating family { xij, yij }, as 
defined in [1]), which is actually just the set of all nonconstant polynomials in the polynomial ring 
Z[X,Y]-Z[xll,..., x,, n,Yllii'y,,,,]. Hence, there is a homomorphism 0: XV-3A such that 
0(xjj) = aij, 6(yij) = bij for each i and j. Defining 4 as in the Transfer Theorem and using the 
fact that det(XY) = (det X)(det Y) for the matrices X and Y over R, we obtain 

det( AB) = det( 4 X - Y) = det 4 ( XY) = 4 det( XY) = 4)((det X)(det Y)) 

= ( (det X))( 4 (det Y)) = (det( 4 X))(det( 4)Y)) = (det A)(det B) 
after several applications of the Transfer Theorem. 

The techniques of the above proof will be repeated with minor modifications to prove the 
theorems which follow. To save space and to relieve tedium, many of the details given above will 
be omitted. 

THEOREM 2 (Cayley-Hamilton). A E Rn implies IA (A) = 0. 

Proof. For any A E Rn, let A = (A) be the subring of R generated by the entries aij of A and 
let X = (X) be the free subring of K = Q(X) generated by the n2 transcendental entries xij of X. 
Let 4 be the canonical homomorphism from M(X, t) to M(A, t) given by the Transfer Theorem 
satisfying 4)(xij) = aij for all i and j. Then 

fA(A) =hox(OX) = (4fx)(4X) =4)(fx(X)) = 4(0) =0 

follows from the Transfer Theorem and the Cayley-Hamilton Theorem fx(X) =0 for matrices 
over R. 

THEOREM 3. If A is a square matrix over the commutative ring R, then 
A(Adj A) = (det A) I = (Adj A) A. 

Proof Let A, X, and 4 be as in the proof of Theorem 2. Then 

X(Adj X) = (det X) I= (Adj X) X 

holds for the matrix X over R, and so the images under 4 of the above three expressions must also 
be equal, i.e., 

A(Adj A) = (det A) I= (Adj A) A. 

So far, we have used the Transfer Theorem only to "transfer" a theorem that is well known for 
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matrices over the real numbers to obtain the corresponding theorem for matrices over an arbitrary 
commutative ring R. The next three theorems are interesting not only because they are less well 
known than the preceding three, but also because even their proof for arbitrary matrices over the 
field R of real numbers makes use of the transfer theorem. The first two of these will be proved by 
obtaining the result for invertible matrices over R and then applying the transfer theorem to 
obtain the corresponding results for any matrices over an arbitrary commutative ring R. In 
particular, this establishes the results for singular matrices over the real numbers. (Note that this 
approach could also have been taken for Theorem 1; indeed, such a proof would be the algebraic 
equivalent of the continuity proof [5] that motivated this paper.) 

THEOREM 4. Let A and B be n X n matrices over a commutative ring R. Then 

Adj (AB) = (Adj B) (Adj A). 

Proof. Case 1. Assume A and B are invertible over R. Then 

Adj(AB) = det(AB) . (AB) 1 = (det A)(det B) B-A- 

= (det B) B-1 * (det A) A - 1 = (Adj B)(Adj A). 

Case 2. A, B E Rn. Let X, Y, and 4 be chosen as in the proof of Theorem 1. Since the 
elements xii of X are algebraically independent, det X can be considered as a polynomial in the 
xij with rational coefficients, and X is singular if and only if this polynomial is identically 0. 
However, the substitution xij = ij (where 8ij is the Kronecker delta defined by ii = 1 and 
-ij if i *Aj) gives X = I and det X = 1, so the polynomial det X cannot be identically 0. Thus 

X is an invertible matrix over R, and so is Y. Hence Adj(XY)= (Adj Y)(Adj X) by Case 1, and 
the Transfer Theorem gives 

Adj(AB) = O(Adj( XY)) = 4p((Adj Y)(Adj X)) = (Adj B)(Adj A). 
THEOREM 5. If A E Rn, then Adj A = PA (A) is a polynomial pA evaluated at A, where 

PA ( t) (_1)n [fA ( t) _fA (?)] t 

Proof. Case 1. Assume A is invertible over R. Then 

ApA(A) = (-1)n+l[fA(A) -fA(O) -I] = (-1)"fA(O) I= (detA) .I=A(AdjA) 
implies that 

PA(A) =Adj A 
upon left multiplication by A - 1. 

Case 2. Let A, X, and ? be as in the proof of Theorem 2. Then X is invertible over R, so 
px(X) = Adj X. Recalling the definition of PAS it is clear from the Transfer Theorem that the 
image under ? is PA(A) = Adj A. 

The last two theorems were first proved for invertible matrices over the field R of real numbers 
and then " transferred" to matrices over arbitrary commutative rings. To carry out the transfers 
we needed to know that the " transcendental matrices" X and Y are invertible. To prove our last 
theorem, we will need a more subtle property of the matrices X and Y, namely, that their product 
XY has distinct eigenvalues in the field C of complex numbers. 

THEOREM 6. Let R be a commutative ring, let A be an m X n matrix over R, and let B be an 
n X m matrix over R, where m < n. Then 

fBA (t) = tn-mfA B(t) 

Proof. Case 1. Let A and B be m X n and n X m matrices, respectively, over the field R of 
real numbers such that AB has distinct nonzero eigenvalues Xi,..., X, in the field C of complex 
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numbers. If X is a nonzero eigenvalue of AB with eigenvector v, then ABv = Xv implies 
BA(Bv)=X(Bv) and X is an eigenvalue of BA, also. Thus, XI,-, Xm are distinct nonzero 
eigenvalues of BA. Hence the n X n matrix BA has rank m and nullity n - m, so 0 is an 
(n-r m)-fold eigenvalue of BA. Therefore, 

JBA(t) = tnm(t- X1) .. (t - Xm)= t fAB(t)- 

Case 2. Let A and B be m X n and n X m matrices, respectively, over the commutative ring 
R, and let X= (xii) and Y= (yij) be m X n and n X m matrices, respectively, with 2rmn 
algebraically independent entries xij, yij in R\Q. The m X m matrix XY is invertible over the 
reals, since its determinant is nonzero. This can be seen by considering det(XY) as a polynomial 
in xij, Yij The substitutions xij = aij and yij = 3ij give det(XY) = det I= 1, showing that 
det(XY) cannot be 0. 

Moreover, XY has m distinct eigenvalues in C. This can be seen as follows: The discriminant 
D(fxy) of fxy is a polynomial in the coefficients of fxy, which are in turn polynomials in the 
entries xij and yij of X and Y. (See [2] or [6] for a description of the discriminant of a polynomial 
and its properties.) The matrix XY has a repeated eigenvalue if and only if the discriminant 
D(fxy) is zero. However, considering D(fxy) as a polynomial in xij, yij, the substitutions 
xij = 8ij and yij = i ij give XY = diag(l, 2,..., m) with m distinct eigenvalues, showing that the 
polynomial D(fxy) cannot be identically 0. 

Defining the transfer homomorphism 4 more or less as in the proof of Theorem 1, we use Case 
1 to obtain 

fyx(t) = 
t" 'fxY(0t), 

and hence, upon taking images under 4, 

JBA ( t) = tlmfAB( t). 

As an algebraist, I was unhappy when years ago I first encountered the "continuity" proof that 
det(AB) = (det A)(det B) given in [5], especially because the extension to singular A or B was so 
easy to carry out algebraically. However, it did motivate me to look for an algebraic equivalent of 
the continuity argument. My solution to this problem was improved by my exposure to the notion 
of a "generic element" in [4] while taking a graduate seminar in Lie algebras. Prior to obtaining 
these proofs, I had not seen Theorems 4-6 in the literature, but it was later pointed out to me that 
Theorem 6 for matrices over a field can be found in [3]. All of these results are so easy and natural 
that they probably appear somewhere in the literature. However, my interest was more in the 
technique than in the specific results. Perhaps some teachers and students of linear algebra may 
find some pleasure and utility in these ideas, just as I have. 
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Tiling Deficient Boards with Trominoes 

I-PING CHU 
RICHARD JOHNSONBAUGH 
DePaul University 
Chicago, IL 60604 

Suppose that we remove one square from an n X n board. A 7 x 7 board with a missing square 
is shown in FIGURE 1. Can we tile the remaining squares with right trominoes? (A right tromino, 

FIGURE I 1 

hereafter called simply a tromino, is an object made up of three squares as shown in FIGumu 2.) In 
this paper, by a tiling of a figure, we mean an exact covering of the figure by trominoes without 

FIGuRE 2 
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having any of the trominoes overlap each other or extend outside the figure. A tiling of the 7 x 7 
board of FIGUR 1 is shown in FIGuRE 3. 

FIGURE 3 

A tromino is a type of polyomino. Since polyominoes were introduced by Solomon W. Golomb 
[2] in 1954, they have been a favorite topic in recreational mathematics. A polyomino of order k 
consists of k squares joined at the edges. A tromino is a polyomino of order 3. Three squares in a 
row form the only other type of polyomino of order 3. (No one has yet found a simple formula for 
the number of polyominoes of order k.) Numerous combinatorial problems using polyominoes 
have been devised (see [3]). 

We will call a board with one square missing a deficient board. In order for a deficient n X n 
board to be tiled by trominoes, 3 must divide n2 - 1 or, equivalently, 3 must not divide n. It is a 
surprising fact that, except for the case n = 5, the condition 3 + n is necessary and sufficient for a 
deficient board to have a tiling. Our proof gives an algorithm for constructing the tilings. 

Before continuing to the next section, we invite the reader to find a tiling of a 7 x 7 board with 
a different square removed than in FIGURE 1, and also to find a deficient 5 x 5 board which 
cannot be tiled. (Some deficient 5 x 5 boards have tilings while others do not.) 

Special cases 

Golomb [2] gave a proof by induction that every deficient n X n board, where n is a power of 
two, can be tiled. We reproduce this proof since we will need the specific cases n = 2, 4, and 8. 
(This proof also appears in Golomb [3] and Liu [4].) Later (Theorem 2) we will give another proof 
of this result for n > 8. 

PROPOSITION 1. Every deficient 2k X 2k board, k > 1, can be tiled. 

Proof. The proof is by induction on k. The case k = 1 is obvious. 
Suppose we can tile a deficient 2k X 2k board. Consider a deficient 2 k+ 1 x 2k+ 1 board. Divide 

the board into four 2k X 2k boards as shown in FIGURE 4. Rotate the board so that the missing 
square is in the upper left quadrant. By the inductive assumption, the upper left 2k x 2k board can 
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be tiled. Place one tromino T in the center, as shown in FIGuRE 4, so that each square of T is in 
each of the other quadrants. These quadrants can now be considered deficient 2k x 2k boards. 
Again, by the inductive assumption, these boards can be tiled. We now have a tiling of the 
2k?1 x 2k + board. 

2k+1 

2k X2k k k 

2k+1 - 

2k x 2k 2k x 2k 

FIGURE 4 

Our next proposition deals with the 5 x 5 board. 

PROPOSITION 2. A 5 X 5 board with one corner square removed can be tiled. 

Proof. If we eliminate the top two rows and the two columns at the extreme left of FIGURE 3, 
we obtain a tiling of the 5 x 5 board with one corner square removed. 

An interesting fact, which we leave to the reader, is that if a square next to a corner square is 
removed from a 5 x 5 board, the resulting board cannot be tiled. 

A trivial but useful fact is our next proposition. 

PROPOSITION 3. A (2i) X (3j) board, i, j > 1, can be tiled. 

Proof. A (2i) X (3j) board can be tiled with the 2 X 3 configurations shown in FIGURE 5. 

3 

2E 

FIGURE 5 

We also need to construct tilings for deficient 7 x 7 boards. 

PROPOSITION 4. Every deficient 7 X 7 board can be tiled. 
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Proof. Let us denote the square in row i, column j by (i, j). Then, by symmetry, we need only 
consider 7 x 7 boards with squares (i, j) removed where i <]j < 4. The solution when square (1, 1) 
is removed is shown in FIGuRE 6. Not all trominoes of the tiling are shown. The 3 x 2 and 2 x 3 

Deficient 5 x- 5 

3 X 2 

FIGURE 6 

subboards have tilings by Proposition 3. The 5 X 5 subboard with the corner square removed has a 
tiling by Proposition 2. Essentially the same figure gives tilings in case square (1,2) or (2,2) is 
deleted. 

FIGuRE 7 gives a tiling in case square (1, 3) is deleted. Essentially the same figure gives tilings in 
case square (1, 4), (2,3), (2,4), or (4,4) is deleted. 

3x2 4x3 

4 x3 3x 4 

FIGURE 7 
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FIGURE 3 gives a tiling in case square (3,3) is deleted. 
We leave the remaining case, where square (3,4) is deleted, to the reader. 

General results 

We are now ready to establish a general result for deficient square boards with odd side. 

THEOREM 1. We can tile any deficient n X n board if n is odd, n > 5, and 3 + n. 

Proof. The case n = 7 is given by Proposition 4. 
The solution for n 11 is shown in FIGURE 8. We first rotate the board so that the missing 

11 

6 x4 
7 x 7 

11 

5 x 5 
4x6 

FIGURE 8 

square is located in the 7 x 7 subboard. By Proposition 4, this deficient 7 x 7 subboard can be 
tiled. The 6 x 4 and 4 x 6 subboards can be tiled by Proposition 3. The 5 x 5 subboard with a 
corner square missing can be tiled by Proposition 2. 

We can now proceed by induction. Suppose that n is odd, n > 11, 3 + n, and that deficient 
k X k boards where k is odd, n > k > 5, and 3 + k can be tiled. FIGURE 9 shows a tiling of the 
deficient n x n board. We first rotate the board so that the missing square is located in the 
(n-6)x(n-6) subboard. Now n-6 is odd, n-6>5, and 3+n-6; so, by the inductive 
assumption, this deficient (n - 6) X (n - 6) subboard can be tiled. Since n is odd, n - 7 is even; 
thus, by Proposition 3, the 6 x (n - 7) and (n - 7) x 6 subboards can be tiled. By Proposition 4, 
the deficient 7 x 7 subboard can be tiled. We have tiled the n X n board. 

Our final result deals with deficient square boards with even side. The proof is similar to the 
proof for deficient square boards with odd side. 

THEOREM 2. We can tile any deficient n x n board if n is even, n > 1, and 3 + n. 

Proof. The cases n = 2, 4, and 8 are given by Proposition 1. 
FIGURE 10 shows a tiling of the deficient n x n board where n is even, n > 8, and 3 + n. We 

first rotate the board so that the missing square is located in the (n - 3) X (n - 3) subboard. Since 
n - 3 is odd, n - 3 > 5, and 3 + n - 3, we may use Theorem 1 to conclude that the deficient 
( n-3) x (n - 3) subboard can be tiled. By Proposition 3, the 3 X (n - 4) and (n - 4) X 3 
subboards can be tiled. By Proposition 1, the deficient 4 x 4 subboard can be tiled. We have tiled 
the n X n board. 
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n 

(n- 6)X(n -6) (n-7)X6 

n 

6 X (n-7) 7 x 7 

FIGURE 9 

17 

(ti - 4) X 3 
(n-3) X (n-3) 

n 

4 X4 
4x4 

3 X (n - 4) 

FIGURE 10 

We conclude: 

THEoREM 3. If n * 5, then a deficient n X n board can be tiled with trominoes if and only if 3 + n. 

Related problems 

Having classified the deficient square boards that can be tiled with trominoes, a number of 
other questions can be raised. For example: 

1. Which deficient rectangular boards can be tiled with trominoes? 
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2. Which rectangular boards with k squares removed can be tiled with trominoes? 
Proposition 3 showed that a (2i) X (3j) (nondeficient) board can be tiled with trominoes. We 

can ask: 
3. Which (nondeficient) rectangular boards can be tiled with trominoes? 
A new set of problems results if we ask the preceding questions about some other kind of 

polyomino. In this connection, de Bruijn [1] proved that if an n X m board is tiled by a x b 
rectangular polyominoes, then either a divides n or a divides m. Actually, de Bruijn's result was 
valid in an arbitrary number of dimensions; we have stated only the two-dimensional case. Of 
course, all of the above questions can be posed in an arbitrary number of dimensions. 

Finally, once we have a tiling of a board, we can ask: 
4. How many tilings of a particular type are there? 
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Three Aspects of Fubini's Theorem 

J. CHRIS FISHER 
University of Regina 
Reginta, Canada S4S OA2 

J. SHILLETO 
6 Locksley Avenue, #SB 
San Francisco, CA 94122 

Which of the three propositions in the box-(1), (2) or (3)-would you consider to be the most 
palpably true? Our first choice is (1), while (3) is second, and (2) is a close third. This is because 

a a2 
Let f(x, y), ax g(x, y), and aa d h(x, y) be continuous real-valued functions in the 

rectangle {(x,y): a x b,c y<d}. Then: 

(1) ( f(u ,v) dvdu = JYfV (u v) dudv, 
~a c c a 

(2) d g(x, v) dv = f- -g(x, v) dv, 

a2 a2 
(3) dydxh(xY) xay h(x, y). 

the geometrical evidence for (1) provides a more compelling argument than the naturalness and 
sense of order of (2) and (3). In fact, (3)'s interpretation using velocities actually detracts from its 
believability (as we shall see)! 

These statements are surprising in light of the fact that using only the fundamental theorem of 
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2. Which rectangular boards with k squares removed can be tiled with trominoes? 
Proposition 3 showed that a (2i) X (3j) (nondeficient) board can be tiled with trominoes. We 

can ask: 
3. Which (nondeficient) rectangular boards can be tiled with trominoes? 
A new set of problems results if we ask the preceding questions about some other kind of 

polyomino. In this connection, de Bruijn [1] proved that if an n X m board is tiled by a x b 
rectangular polyominoes, then either a divides n or a divides m. Actually, de Bruijn's result was 
valid in an arbitrary number of dimensions; we have stated only the two-dimensional case. Of 
course, all of the above questions can be posed in an arbitrary number of dimensions. 

Finally, once we have a tiling of a board, we can ask: 
4. How many tilings of a particular type are there? 
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rectangle {(x,y): a x b,c y<d}. Then: 

(1) ( f(u ,v) dvdu = JYfV (u v) dudv, 
~a c c a 

(2) d g(x, v) dv = f- -g(x, v) dv, 

a2 a2 
(3) dydxh(xY) xay h(x, y). 

the geometrical evidence for (1) provides a more compelling argument than the naturalness and 
sense of order of (2) and (3). In fact, (3)'s interpretation using velocities actually detracts from its 
believability (as we shall see)! 

These statements are surprising in light of the fact that using only the fundamental theorem of 
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calculus and some routine manipulations, any one of these propositions can be derived from any other. 
Many of our observations can be found in [2], and some of the ideas are suggested by exercises 

in [1, p. 793], [3, p. 61], and [4, pp. 464-465]. Nevertheless, they are missing from contemporary 
calculus texts and deserve occasional airings. In addition to bringing [2] back to light, our goal 
here is to emphasize the intuitive content of this circle of ideas. 

Statement (1), a special case of Fubini's theorem, can be interpreted as follows: 
One gets just as much tomato to eat if he slices it from left to right or from back to front. 

Compare this with the mental gymnastics required to untangle the interpretation of (3): 
A person walks on a hillside and points a flashlight along a tangent to the hill; then the rate at 
which the beam's direction changes when walking south and pointing east equals its rate of 
change when walking east and pointing south. 

We leave the interpretation of (2) to the reader. (Hint: The left side of (2) is the rate of change of 
the cross-sectional area of the tomato slices mentioned above. Does your interpretation of (2) 
convince you of its validity?) 

Proofs that the statement (i) implies (i + 1) are readily found in textbooks (or see [2]). As a 
typical example, here is the standard proof that (1) implies (2). We assume (1) and define 

f(x, Y)= ag(x, y). That is, 

f f(u,y) du=g(x,y) -g(a, y). 

Then 

dx|g(x, v) dv= dxf|(f f(u,v) du + g(a v)) dv 

- fYfXf(u,V) dudv+ 
a 

fYg(a,v) dv. 
c_ aa c 

Since fYg(a, v) dv is a function of y only, its partial derivative with respect to x is zero, and 

(having assumed (1)) 

dfYg(x, v) dv= dd fYf(u v) dvdu 

= f(x, v) dv 

=fYdXg(x,v)dv. 

The proof's only nontrivial steps use the fundamental theorem of calculus. Indeed, one rather 
undesirable feature of this proof is that the details make it seem as if something more is involved. 
Let us therefore change our notation to one of operators to bring out the essence of the above 
argument. Define 

Dx f dax ' Dx,= f (u, y) du, 

Dyf = df yand Dy-f := f(x, v) dv. 
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In this notation, statements (1), (2), (3) become 

(1) D- D- D- 

(2) Dx Dy- Dy- 'Dx, 

and 
(3) Dx Dy =Dv Dx - 

The fundamental theorem of calculus for f = f(z) is essentially Dz Dz- lf = Dz- Dzf = f, where 
"essentially" means that Dz- Dzf should have a constant of integration. Of course, in the present 
context that constant eventually disappears (much as it did in the detailed proof), a fact that can 
conveniently be left as an exercise. With this warning, the proof that (1) implies (2) now reads 

DX Dy IF= D D-1( DX Dx)Dx ( DX; Dy 1) DX = Dy- 'Dx 
F.T. (1)F.T. 

Here is (2) implies (3): 

Dy Dx =Dy Dx Dy1 Dy Dy Dy- Dx Dy = Dx Dy F.T. ~'~ (2) F.T. 

The proofs that (3) implies (2) and (2) implies (1) can be obtained by interchanging D with 
D- 1 in the lines above. 

We should emphasize that because D- Df differs from f by a constant, the above argument 
does not constitute a rigorous proof that (i) implies (i - 1). It is, however, an amusing exercise to 
decode such a symbolic argument to check that each constant of integration really does disappear. 
Here, for example, is a proof that (3) implies (2) (by decoding Dy- Dx = Dy- DxD, Dy- = 
Dy-1Dy DxD1 = DxD- ): 

y y y x~~yaa a 

vg( v) dv=fld( l g(x, t) dt) dv 

f d f g(x, t) dtdv 

FT dxxl( t) dt - dx lg(x t) dt 

=ayfg(x, v) dv. 

The ideas touched upon in this note seem to be appropriate for any calculus course, rigorous or 
not. At one level they provide an attractive way of proving (3): merely explain how it follows 
quickly from (1). At any level they provide the opportunity to stress normally unseen connections 
while providing one more chance to show (and show off) the power of the fundamental theorem 
of calculus. 

Note finally that one can easily avoid the intermediate proposition (2), since (3) follows directly 
from (1): 

DyeDx = DyDxo(Dy-Dx-) DxDy = tothan DM fo t hlf comments= Dx Dyre 

We would like to thank Jerry Marsden and John Wilker for their helpful comments and references. 
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Proposals 

To be considered for publication, solutions 
should be received by July 1, 1986. 

1231. Proposed by Martin Feuerman, New Jersey Medical College, Newark. 
Let A be a t X t real symmetric matrix of rank t - 1 such that AI = 0, where 1 is the t X 1 

vector with each element equal to 1, and let 

A* =[A I] 

(The prime denotes transpose.) Prove that A* is nonsingular. 

1232. Proposed by J. T. Groenman, Arnhem, and D. J. Smeenk, Zaltbommel, The Netherlands. 
Let l be the Euler line of the nonisosceles triangle ABC (with sides a, b, c and angles a, /B, y), 

and let d be the internal angle bisector of y. (The Euler line of a triangle contains the centroid, 
circumcenter, and orthocenter.) Prove that: 

(a) l is perpendicular to d if and only if y = 7T/3; and 
(b) I is parallel to d if and only if y = 27T/3. 

1233. Proposed by Robert E. Shafer, Berkeley, California. 
Prove that if x > -l and x =*O, then 

x x2 

2 2 
x2 240 X 2- 246 

1+X+12 31 2 12 x2 1 +x+ 252x 12+X+ 20 

ASSISTANT EDITORS: CLIFTON CORZATT and THEODORE VESSEY, St. Olaf College. We invite readers to submit 
problems believed to be new and appealing to students and teachers of advanced undergraduate mathematics. Proposals 
should be accompanied by solutions, if at all possible, and by any other information that will assist the editors and 
referees. A problem submitted as a Quickie should have an unexpected, succinct solution. An asterisk (*) next to a 
problem number indicates that neither the proposer nor the editors supplied a solution. 

Solutions should be written in a style appropriate for Mathematics Magazine. Each solution should begin on a 
separate sheet containing the solver's name and full address. 

Solutions and new proposals should be mailed in duplicate to Loren C. Larson, Department of Mathematics, St. Olaf 
College, Northfield, MN 55057. 
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1234. Proposed by the Computer Science Problem Seminar, Stanford University. 
A positive integer is said to be "sorted" if the digits in its decimal notation are nondecreasing 

from left to right. 
(a) Let x be any integer whose decimal notation consists of an arbitrary number of 3's 

followed by an arbitrary number of 6's followed by a single 7. Prove that x2 is sorted. For 
example, 333666672 = 1113334466688889. 

(b)* Which positive integers x are such that both x and x2 are sorted? 

1235. Proposed by Ira Rosenholtz, The University of Wyoming. 
The book Calculus in Vector Spaces by Lawrence J. Corwin and Robert H. Szczarba contains 

the following in its discussion of local extrema for functions of several variables. 
"Suppose f has local maxima at v1 and v2. Then f must have another critical point, V3, 

because it is impossible to have two mountains without some sort of valley in between. The other 
critical point can be a saddle point (a pass between the mountains) or a local minimum (a true 
valley)." 

(a) Show that the impossible is possible. 
(b)* Is the impossible possible for polynomials? 
[For related material see three articles in the May, 1985, issue of this MAGAZINE, pp. 146-150, 

as well as the article by Calvert and Vamanamurthy in J. Austral. Math. Soc., ser. A, v. 29 (1980) 
362-368.] 

1236. Proposed by Mihaily Bencze, Sacele, Romania. 
Let the functions f and g be defined by 

72x 8x 
f(x) = 2, 2 +8X2 and g(x) = 4 8x2 for all real x. 

(a) Prove that if A, B, and C are the angles of an acute-angled triangle, and R is its 
circumradius, then 

f(A) +f(B) +f(C) < a + b + c < g(A) + g(B) + g(C). (1) 

(b)* Determine functions f and g, where f(x) and g(x) have the form x/(u + vx2), with u 
and v real constants, for which the inequalities in (1) are best possible. 

Quickies 

Answers to the Quickies are on pages 53- 54. 

Q704. Submitted by M. S. Klamkin, University of Alberta. 
Determine the maximum value of 

cos2zPOA + COS2zPOB + COS2 ZPOC + COS2ZPOD, 
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where ABCD is a face of a cube inscribed in a sphere with center 0, and P is any point on the 
sphere. 

\~~~~~~~~~~~ 

A 

187 
0 

1116 

\ I \7~~~~~~~~~~~2.5 

Q705. Submitted by John P. Hoyt, Lancaster, Pennsylvania. 
In the accompanying figure, AB = 87, BC = 105, CD = 116, and radius OC= 72.5. Find AD. 

Q706. Submitted by Bill Olk, student, Carroll College. 
Suppose that the function f is continuous on the interval [a, b], is differentiable on (a, b), and 

vanishes at a and b. Show that for every real number r, there is a point c in (a, b) such that 
f '(c)= r(f(c))2. 

Q707. Submitted by Zhang Zai-ming, Yuxi Teachers' College, Yuxi, Yunan, China. 
Let the perpendicular bisectors of the sides BC, CA, and AB of triangle ABC intersect the 

circumcircle of ABC in the points A', B', and C', respectively, so that A' is on the arc BC not 
containing A, and similarly for B' and C'. Continue the process by constructing triangle A"B"C" 
from A'B'C' in the same way, and so on. Show that the angles of triangle A(")B(n)C(") approach 
,g/3 as n -s o. 
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Solutions 
Sum of Inradii of a Dissected Triangle January 1985 

1206. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey. 

Let ABC be a triangle with sides a, b, and c and semiperimeter s. Let the side BC be 
subdivided using the points B= P,P1,..., Pn, P, = C in order. If ri is the inradius of triangle 

BPo al Pi'- i ai PP, C 

FIGURE 1 

APi-IPi for i= 1,..., n, prove that 
1 s 

,rl + *+rn <-Ih Ins 

where ha is the length of the altitude from vertex A. 

Solution by Vania D. Mascioni, student, ETH Ziurich, Switzerland. 
For i = 1,2,...., n let ai be the base Pi-1Pi and si the semiperimeter of triangle APi1Pi, and 

let a' and s, be the corresponding quantities for triangle ABPi. We show below that 

s_a_ sa= 'i aifor 2 ? i ? n. (1) 
si- 1 Si Si 

An easy induction yields 

s = 

From the arithmetic-geometric mean inequality and the fact that risi = iaiha we obtain 

(Ss ) -n 1 ' sa 1 s ri 46J i~1 i=1 n Ma iM Z 
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so that 
r<nha (1_s-a )/n) 

which is stronger than the proposed inequality, which follows if we use 1 - l/x < In x for x > 1 
with x:= (s/(s - a))1/n. 

Proof of (1). To simplify notation, the sides of triangles ABPi-1 and APi IPi are relabeled as 
shown in FIGURE 2. Then (1) becomes 

A 

w 

p q 
B Pi--1 Pi 

FIGURE 2. Stewart's theorem. 

u+v-p v+w-q = u+w-p-q 
u+v+p v+w+q u + w + p + q' 

and an easy (though boring) algebraic manipulation shows this is equivalent to 

(v2 +p2 _ u2)q+ (V2 + q2 _ w2)p=0. 

Now by the law of cosines, this is equivalent to 

2pqv(cosZAPi-IB + cosZAP.- P1) =0, 

which is obvious, since ZAPiB + ZAPj-1P1 = v. Cf. also Stewart's theorem, in Coxeter and 
Greitzer, Geometry Revisited, p. 6. 

Also solved by Jordi Dou (Spain), Vaiclav Konecny & Ronald Shepler, L. Kuipers (Switzerland), Syrous Marivani, 
William A. Newcomb, Bjorn Poonen (student), J. M. Stark, Paul J. Zwier, and the proposer. 

Most solvers used an estimate like 

ha(Xi -X;-) fz?a h dx 

1 r< IJ j' x'-X'+ (Xji)2 +(ha) + (X)2 + (ha)2 2 2 

where A = (0, ha), B = (z,0), C= (z + a,O), P = (xj,O), [Po,4.,P,'] is a strict refinement of the partition 
[PO,..., P,,] of BC (i.e., each Pi is a Pj', and m > n), and rj' is the inradius of triangle APJ-1PJI'. 
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A Generalized Weakened Goldbach Theorem January 1985 

1207. Proposed by Barry Powell, Kirkland, Washington. 

Prove that for each positive integer K there exist infinitely many even positive integers which 
can be written in more than K ways as the sum of two odd primes. 

I. Solution by Michael V. Finn, Annandale, Virginia. 
Let P be the set of odd primes, and let ai be the number of ways in which 2i can be written as 

the sum of two elements of P. Suppose that the sequence (aj)7?= has an upper bound M. Then 
for every x E (0,1) we have 

2 00 Mx4A ( E xP) = Ea x2i < M E,M2E Mx- 
p P i=2 i=2 

Hence 

xp-l XP < X 

pEP pEp 1X2 

Then, since a power series can be integrated term by term within its interval of convergence, we 
have 

1 (1P-ldxfdxn1i i7 1 X dx/K 
E, 1 = FIlX dx=t E XP-lxRo C X dx = w 
PEP'P pep0 pP 0 P1_-9 

But it is known that Ep - p(1/p) is unbounded, so we arrive at a contradiction. Hence for every 
M, some ai exceeds M. 

II. Solution by John A. Frohliger, St. Norbert College. 
Since every odd integer can be written as the sum of two primes in at most two ways, the 

problem is equivalent to the following: 
For every positive integer K there exist infinitely many positive integers which can be written 

in more than K ways as the sum of two primes, where the sums a + b and b + a are considered 
distinct if a * b. 

Proof. Suppose that only finitely many integers can be written as the sum of two primes in 
more than K ways, and that N is the largest of these integers. Since N can be written as the sum 
of two positive integers in N - 1 ways, no integer can be written as the sum of two primes in N or 
more ways. Let n be a positive integer and 7(n) the number of primes not exceeding n. Then 
(7r(n))2 is the number of sums of two primes, neither exceeding n. Since no such sum exceeds 2n 
and no integer not exceeding 2n can be written as such a sum in N or more ways, we see that 

(T(n ))2 <2nN. 

Hence 

( n)lo n )2 <2N log2n 

Now let n -> oo. By the prime number theorem, the left side approaches 1, while the right side 
clearly approaches 0. Hence 

1 ?0, 

which provides the desired contradiction. 

Also solved by Andreas MaYller (student, Switzerland), William A. Newcomb, Bjorn Poonen (student), Daniel A. 
Rawsthorne, William Staton, and the proposer. 

Most solvers used the prime number theorem, although the weaker estimate s7(x) > ax/log x with, say, a = .1, 

48 MATHEMATICS MAGAZINE 

This content downloaded from 86.144.179.237 on Sat, 14 Jun 2014 12:24:36 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


due to Chebyshev and used by the proposer, is sufficient. Rawsthorne proved a generalization: let R(n) be the 
number of representations of n as the sum of two primes. If 0 < E < 1/4, then there are infinitely many even integers 
n with R (n) > (1/4 - e) n/log2(n/2). 

A Two-Term Product Inequality January 1985 

1208. Proposed by Mihaly Bencze, Sacele, Romania. 
Prove that if a and b are positive, then 

n 

F7 (ak + bk)2 > (a"l+l + bPl?l)". 
k=1 

Composite of nearly identical, independent solutions by: Victor Hernaindez, Universidad Autonoma 
de Madrid, Spain; Padmini T. Joshi, Ball State University; Michael M. Parmenter, Memorial 
University of Newfoundland, Canada; Richard E. Pfiefer, San Jose State University; Bjorn Poonen, 
student, Winchester, Massachusetts; Jan S6derkvist, student, Stockholm, Sweden; and Carl 
Wagner, University of Tennessee. 

n n n 

Hl (ak + bk)2 = (ak+bk) Hl (an+l-k + bll-k) 
k=1 k=i k=1 

= HI (an?l? +akbl?1-k + an+l-kbk + bll) 
k=i 
n 

> 11 (aat"l + b?l?) = (atl"l + bn?l)n 
k=i 

Note that inequality is strict. 

Also solved by Beno Arbel (Israel), David Boduch (student), Pedro Celis (Canada), Crist Dixon, Sheldon 
Degenhardt (student), Michael V. Finn, David C. Flaspohler, Riad Ghibril (student, Lebanion), Chico Problem 
Group, Gymnasium Bern-Kirchenfeld Problem Solving Group (12 students, Switzerland), Hans Kappus (Switzerland), 
M. S. Klamkin (Canada), Vaclav Konecny & Ronald Shepler, L. Kuipers (Switzerland), Eugene Levine, J. C. 
Linders (The Netherlands), Peter W. Lindstrom, Beatriz Margolis (France), Syrous Marivani, Vania Mascioni 
(student, Switzerland), Mike Molloy (student, Canada), Andreas Maller (student, Switzerland), Roger B. Nelsen, 
William A. Newcomb, Richard Orr, David Paget (Australia), Richard Parris, Kostas A. Petrcakos, Daniel A. 
Rawsthorne, Joseph Sardinha, Jr., Volkhard Schindler (East Germany), Shannon Schumann (student), Michiel Smid 
(student, The Netherlands), J. M. Stark, B. Viswanathan (Canada), Michael Vowe (Switzerland), J. G. Wenldel, 
Wong Ngai Ying (Hong Kong), Yan-Loi Wong (student), and the proposer. There was one inicorrect solution. Late 
solution by Erhard Braune (Austria). 

A Definite Integral January 1985 

1209. Proposed by Themistocles M. Rassias, Athens, Greece. 

Evaluate 

?? FX log Xd J0 X 2dx. 

I. Solution by Victor Hernaindez, Universidad Autonoma de Madrid, Spain. 
Use integration by parts, with u = Vx log x and dv = (1 + X)-2 dx, so that 

J0f logx dx 1= I logx dx+ j x 
o (1?+ X)2 2J V (I + x) o i(1 + x) 

Now, letting y = l/x, we have 
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l lo gx dx logy dy 
JoVi(I1?x) dx 1 y (I1?y) d 

and both improper integrals exist. Hence 
l o log x d O f ~~~dx = 0, 

from which it follows that 
fooV~lo 

dx 
o d [2 Arctanv&TFx 

vr 

(1 + x)2 o (1 + x) 
[ = 

II. Solution by William A. Newcomb, Lawrence Livermore National Laboratory. 
A generalization is proved. Draw a cut in the complex plane from 0 to oc along the positive 

real axis, and define the range of 9 to be from 0 to 2v in the formulas z = re'0 (with r > 0), 
log z = log r + iG, andz = - Vei9/2. Let F be any rational function having no poles on the 
positive real axis and satisfying the further conditions 

F( z) is real for positive real z, 

F(z) = O(r-2) as r oo, and 
F(z) = O(r-) as r 0. 

Let G(z) = F(z)VzH log z. We apply the residue theorem to fcG(z) dz around the closed contour 
C consisting of: the segment C1 from E to R (where 0 < E < R) along the upper edge of the cut; 
the circle C2 of radius R centered at the origin and traversed in the positive or counterclockwise 
sense; the segment C3 from R to E along the lower edge of the cut; and the circle C4 of radius E 
centered at the origin and traversed in the negative sense. Let the poles Zk of G have the 
respective residues Pk. Now 

G(z) dz +JG(z) dz = F( x)ix(log x) dx+ ? F( x)(-Vx)(log x + 2 ri) dx 

= 2J F( x) vx(log x) dx + 2 ri, F( x)1x dx, 

JG(z) dz = 0(2TRR * R-(logR + 27r)) = O(R- log R) as R oo, 
C2 

and 

f G(z) dz = 0(2TrE * E(log El + 2r)) 
= 

0(El /1 log E|) as E 0- 
C4 

Hence by passage to the limit as R -- oo and E -O 0 and use of the residue theorem we obtain 

2f F(x)Vx (log x) dx + 27Tif F( x)|; dx = 2vTriZ Pk 
k 

Hence 
J00 

F( x) ; dx = E Re Pk 0 k 

and 

| FF(x)Virx(log x) dx =-rZE Im Pk- 
k 

In particular, for F(z) = (1 + Z)-2 we have 
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and so 
00 FXlog x oo 1; rx fVI=1og and ( dx=-. 

0 (1?X)2 Jo (1? X)2 2 

Also solved by Nicolas Artemiadis (Greece), David Boduch (student), W. M. Causey, L. Matthew Christophe, Jr. 
(two solutions), John M. Coker, Roger Cuculiere (France), Sheldon Degenhardt (student), Peter F. Ehlers (Canada), 
Itwin K. Feinstein, Edward Gade, 3rd, Ralph Garfield, Raymond Greenwell, Chico Problem Group, Hans Kappus 
(Switzerland), Panos Karambelas (student), M. S. Klamkin (Canada), L. Kuipers (Switzerland), Kee-wai Lau 
(Hong Kong), Randall Leigh, Robert Leslie, Peter Lindstrom, Beatriz Margolis (France), Syrous Marivani, Fran 
Masat, Vania Mascioni (student, Switzerland), Roger B. Nelsen (three solutions), Richard Parris, Kostas A. 
Petrakos, Bjorn Poonen (student), Wulf D. Rehder (three solutions), Volkhard Schindler (East Germany), Robert E. 
Shafer, Michiel Smid (student, The Netherlands), M. R. Spiegel (two solutions), J. M. Stark, John S. Sumner, 
Michael Vowe (Switzerland), Edward T. H. Wang (Canada, two solutions), Harty Weingarten, M. G. Wurtele, Paul 
J. Zwier, and the proposer. 

The solutions submitted were of five main types: elementary evaluation using various substitutions; use of the 
gamma or beta function; use of contour integrals; use of infinite series; and table look-up, principally in Gradshteyn 
& Ryzhik, formula 4.252.4. The problem occurs, or can be reduced to one occurring, in several well-known 
textbooks. For example, Nelsen found it in Churchill et al., Complex Variables and Applications, fourth edition, p. 
183, problem 9 (set x = t-2). Evaluations of several related or more general integrals were submitted, among them 
the following: 

(7i B )2 dx = 2 (R. E. Shafer); 

x" log dx= n(- n2-( cot(pp7) ? _2 c( 

+ x)' kn - I j==Oi 

if 0 <p < 1, n > 2, and n is an integer (M. R. Spiegel). 

Rational Polynomials and Roots of Unity January 1985 

1210. Proposed by J. Rosenblatt, The Ohio State University. 

For a fixed integer n> 3, consider the polynomials f(x) with rational coefficients and degree 
less than n such that I f( o) I = 1 whenever w is an n th root of unity. Must there be infinitely 
many such polynomials f(x)? 

Solution by Daniel B. Shapiro, The Ohio State University. 
The answer is YES. Let Q be the field of rational numbers and ; any primitive n th root of 

unity, such as exp(2vTi/n). The result is a consequence of the following Claim. 

CLAIM. Let n be 4 or an odd prime. Then there are infinitely many f(x) E Q[x] with degf < n 
such that If( ) I = 1 and f(1) = 1 (and f(-1) = 1 if n = 4). 

The Claim will settle the question in these special cases. For suppose that X is an nth root of 
unity and that f is one of the functions whose existence is guaranteed by the Claim. If W = 1 (or 
X = -1 when n = 4), then clearly I f( c) I = 1. If W + + 1, then Galois theory implies that X = t? 
for some automorphism a of Q('). Since complex conjugation commutes with every automor- 
phism of Q('), it follows that 1a01 = jai for every a E Q(?). Therefore, If(X) f =If(D?) | 
=RAN GI)? =IA0D I = 1. 

Now any given n > 3 has a divisor d which is either 4 or an odd prime. From the preceding 
argument we know that there are infinitely many polynomials g(x) E Q[x] with deg g < d and 
with I g( t) I = 1 whenever It is a dth root of unity. For any such g(x) we define f(x) to be 
g(Xn/d). Then degf< n and j f( c) I = 1 whenever X is an nth root of unity. Furthermore, 
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distinct g's provide distinct f 's. Hence the problem is solved once we have established the Claim. 
To prove the Claim, we first note that there are infinitely many a E Q(') with au- = 1, e.g., 

a = (r + ')/(r + ') = (r + ')/(r + 1/4) with r E Q. It is easy to see that distinct r's provide 
distinct a 's. We now construct for each a a polynomial f(x) E Q[ x] satisfying the conclusions of 
the Claim, with distinct a's providing distinct polynomials. If n is an odd prime, it suffices to take 
f(x) = cO + C1X + * +Cn-2Xn-2 + a(I + x + +Xn-1), where cO + cl; + +Cn?J n-2 
with cj E Q is the unique representation of a in the Q-basis {1, .. . ., n-2 } of Q('), and a E Q is 
chosen suitably. Since f(') = a, the condition f(1) = 1 forces a = (1-co - cl - - c,,2)/n E 
Q. If n = 4, it suffices to take f (x) = co + cl x + a(I + X + x2 + X3) + b(I + X2), where a = co + cli 
with unique cj E Q and suitable a and b in Q. Since f (i) = a, the conditions f (1) = f ( - 1) = 1 
force a = - cl/2 E Q and b = (1 - co + cl)/2 E Q. Thus every one of the infinitely many choices 
of a determines a suitable polynomial, which proves the Claim. 

It may be noted that the result is false if n < 2, since there are only two constant polynomials 
f (x) with f (1) = ?1, and only four linear polynomials f (x) with f (1) = ?1. 

There was one incorrect solution. 

Comments 
966 (proposed January 1976; partial solution May 1977). 
No solution was published for part (iii), which was to determine if it is possible to find a square and an interior point 
such that the distances from the interior point to the vertices and to the sides are all integers. John P. Robertson 
(Berkeley, California) has proved that there is no such square if it is required that two of the distances from the point 
to the sides be equal. 

1094 (proposed March 1980; solution May 1981). 
Late solution by Lee A. Hagglund (lost in editor's files). 

1154 (proposed November 1982; solution January 1984). 

The late Henry E. Fettis (Mountain View, California) provided a generalization, replacing the positive integer n by 
an arbitrary positive real number p. Let 

kpx = 
E(1 k )(k + 1) 2 

Then d(xF'(x))/dx = (1 - x) P-1, and integration and substitution yield 

Fp (1) = I1 1-(I -t)P dt I 
(+ (I + P)+ C), 

where 4A(z) = F'(z)/I(z) and C is Euler's constant. 

Q677 (November 1982). 
Benny N. Cheng (student, University of California, Berkeley) gives a direct proof. Let P be a polynomial of degree 
n ? 2 with real coefficients: P(x) = axn + bx`1 + cXn-2 + .. If (n - 1)b2 < 2nac, then P has at most n - 2 
real zeros. For suppose that P has n real zeros (it cannot have n - 1). We may assume without loss of generality 
that a = 1. Let a1,..., a,, denote the (real) zeros of P. Then b= -i?ai and c=Fi< juuj. Hence 
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(n n-1)1b2_ 2nc e (n - 1)(ai) _ 2n Zaiai n(( Ea)-2Zaiaj) _ (Eai) na2_ (Ea.), 

which is nothing but the Cauchy-Schwarz inequality. Hence if P has n real zeros, then (n - 1) b2 > 2 nac, and the 
contrapositive follows. 

Q677 is a generalization of Q626 (September 1975). 

Answers 

Solutions to the Quickies on pages 44-45. 

A704. We choose a rectangular coordinate system so that the direction cosines of OA, OB, OC, 
and OD are ( i + 1 + I ). Let the direction cosines of OP be (u, v, w). Then 

ECos ZPOA ?( + - + ) = ? (constant) 

A705. Rearrange the sides of the quadrilateral as shown in the accompanying figure. The triangle 
whose sides are 87, 116, and 145, i.e., 3 x 29, 4 x 29, and 5 x 29, is a right triangle. Therefore the 
triangle whose sides are x, 105, and 145, i.e., x, 21 x 5, and 29 x 5, is a right triangle, and 
x = 20 X 5 = 100. 

105 

I I ,/' 1~~~~~~~~~~~116 

87 
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Note. In the given quadrilateral, the diagonals had lengths of 143 and 144, the diagonals were 
perpendicular, and the area of the quadrilateral was 10296. In the rearranged quadrilateral, the 
diagonals have lengths of 143 and 145, the diagonals are not perpendicular, and the area is 10296. 

A706. Let g be an antiderivative of f and set h(x) e-rg(x)f(x) for all x in [a, b]. Then h 
satisfies the hypotheses of Rolle's theorem on [a, b]. Hence there is a c in (a, b) such that 
h'( c) = - rg'( c) e- rg(c)f ( c) + e- rg(C)f ( c) = 0. Dividing out the nonzero exponentials and noting 
that g'(c) = f (c) yields the desired result. 

A707. From the figure we see that A' = 2 (B + C) = (7T - A). By induction we obtain A(". ) 
1- 1 + (- )n) + (- )nA, which approaches ff/3 as n 00, and similarly for B("' and 

A' 

Ed. note. Several similar problems have appeared in the literature. In this MAGAZINE, problem 913 (v. 48 (1975) 
246-247), A' is the intersection of the circumcircle with the median from A; in the MONTHLY, problem E2906 (v. 90 
(1983) 338), A' is the intersection of the circumcircle with the angle bisector from A; in the MONTHLY, problem 
E1223 (v. 64 (1957) 274-275), and in Crux Mathematicorum, problem 554 (v. 7 (1981) 184-185 and v. 10 (1984) 
197-198), A' is the point of tangency of the incircle with BC. 
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PAUL J. CAMPBELL, Editor 
Beloit College 

Assistant Editor: Eric S. RosenthaZ, West Orange, NJ. ArticZes and books are 
seZected for this section to eaZZ attention to interesting mathematicaZ exposi- 
tion that occurs outside the mainstream of the mathematics Ziterature. Readers 
are invited to suggest items for review to the editors. 

Albers, Donald J., et aZ. (eds.), New Directions in Two-Year Cozzege Mathematics: 
Proceedings of the SZoan Foundation Conference on Two-Year CoZZege Mathematics, 
Springer-Verlag, 1985; xx + 491 pp, $24. 

Report on the first national conference on mathematics education in two-year 
colleges. Most of the excellent essays and discussions are of new curricula 
and new tools and are of interest also to faculty at four-year colleges and 
universities. 

Weeks, Jeffrey R., The Shape of Space: Sow to VisuaZize Surfaces and Three- 
Dimensional ManifoZds, Dekker, 1985; x + 324 pp, $49.75. 

What is the shape of space? This splendid book, which has no prerequisites 
except curiosity, treats the connections between topology, geometry, and cos- 
mology. A wealth of illustrations, a minimum of notation, a little fantasy 
(a la Flatland), and lots of thought-provoking exercises make the book 
superbly stimulating. Even among professional mathematicians, few will fail 
to learn something new about geometries on 3-manifolds. Too bad about the 
price; authors of books like this one would serve potential readers better 
by striving for more inexpensive publication (e.g., in an MAA series). 

Brancazio, Peter J., Sport Science: PhysicaZ Laws and Optimum Performance, 
Simon & Schuster, 1985; 400 pp, $9.95 (P). 

Why should you string your tennis racket at 50 rather than 70 lbs.? or launch 
a basketball at the minimum-effort angle? There's less mathematics here than 
physics--in fact, the mathematics of the optimization is kept hidden, with 
only the results displayed in tables. Still, it's enjoyable to see how far a 
few simple mathematical models can go. 

Honsberger, Ross, MathematicaZ Gems III, MAA, 1985; 250 pp, $27 ($21 to members). 

This additional collection of capsules--whose technical demands seldom go 
beyond college freshman mathematics--is mostly dedicated to problems from 
discrete mathematics. The sole remaining problem is to get a book like this 
into the hands of each freshman interested in mathematics; once read, it will 
work its charm. 

Stewart, Ian, The power of positive thinking, Nature 315 (13 June 1985) 539. 

Relates recent progress by C. N. Delzell on Hilbert's 17th problem, on the 
representation of positive functions as sums of squares. 
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McMahon, Thomas A., and Bonner, John Tyler, On Size and Life, Scientific Ameri- 
can, 1983; xiii + 255 pp. 

An engineer and a biologist team to write for the general reader one of the 
most enjoyable natural history books of the decade. With hundreds of photo- 
graphs, figures, and graphs, they illustrate--in both qualitative and quan- 
titative terms--the consequences of different sizes, for the physiology, 
embryology, support structure, locomotion, and evolution of organisms. The 
fundamental concepts of similarity and allometric growth are investigated 
using log-log plots; even high-school students can enjoy this book. 

Halmos, Paul R., I Want to Be a Mathematician: An Automathography, Springer- 
Verlag, 1985; xv + 421 pp, $41.50. 

What's it like to become and be a research mathematician? Not bad, Paul 
Halmos might conclude. Would-be mathematicians will get some idea of what 
it's like; current practitioners are bound to find an anecdote about someone 
they've heard of or met. This congeries wanders in enjoyable fashion, alter- 
nately opinionated, interesting, judgmental, and inspiring. True to the 
neologism of the title, Halmos sticks to the mathematical side of his life; 
for example, one learns of his marriages only through accidental references. 
Non-mathematicians may get the wrong impression, that mathematicians' lives 
are as narrow as popularly suspected; in any case, Halmos is writing less for 
them than for his colleagues and successors. 

Mackiw, George, AppZications of Abstract AZgebra, Wiley, 1985; v + 184 pp, 
$11.95 (P). 

Provides a supplement on applications for a class studying groups, rings, and 
fields. Included are exact computing, error-correcting codes, block designs, 
crystallography, integer programming, cryptography, and combinatorics. 

Moore, David S., Statistics: Concepts and Controversies, 2nd ed., Freeman, 
1985; xvii + 350 pp, $19.95, $12.95 (P). 

Second edition of an outstanding statistics book for readers interested in 
ideas rather than technique. Changes include updating data and topical exam- 
ples, adding fresh non-numerical exercises, and providing some added material. 

Hofstadter, Douglas R., MetamagicaZ Themas: Questing for the Essence of Mind 
and Pattern; An InterZocked CoZZection of Literary, Scientific, and Artistic 
Studies, Basic Books, 1985; xxviii + 852 pp, $24.95. 

Admirers of Hofstadter's former column in Scientific American will be over- 
joyed at this volume, which contains all of those 25-1/2 columns, plus further 
comments and eight additional essays. Those who know him only from GodeZ, 
Escher, Bach: An EternaZ GoZden Braid--or worse yet, not at all!--should 
prepare for an extended treat by the master of self-reference, pattern, and 
perception. His cleverness wanders "all over the intellectual map--from 
sexism to music to art to nonsense, from game theory to artificial intelli- 
gence to molecular biology to the Cube." 

Abraham, Ralph H., and Shaw, Christopher D., Dynamics--The Geometry of Behavior: 
Part 3: GZobaZ Behavior, Aerial Pr, 1985; xi + 123 pp, $26 (P). 

Continues the authors' Visual Mathematics Library, in which mathematical con- 
cepts are presented without algebra or equations. This volume treats generic 
properties of dynamical systems, structural stability, heteroclinic and homo- 
clinic tangles, and nontrivial recurrence. 

Day, Lucille, The higher math, CaZifornia MonthZy (June-July 1985) 15-17 + cover. 

Story on the mathematics research center in Berkeley, California. 
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Cleveland, William S., The Elements of Graphing Data, Wadsworth, 1985; xii + 
323 pp, $27.95, $18.95 (P). 

Practical hints on how to graph data for best effect, a how-to manual to 
accompany E. R. Tufte's The Visual DispZay of Quantitative Information 
(1983). Cleveland draws most of his examples from illustrations in Science, 
where 30% of the graphs give cause for discussion and improvement. 

Brancazio, Peter J., The physics of kicking a football, The Physics Teacher 
23:7 (October 1985) 403-407. 

Constructs a model "of the trajectory of a football kick, using the laws of 
projectile motion and basic aerodynamics. This model is able to determine 
within a fairly narrow range the launching angles used for kickoffs and 
punts." The editors note: "The author gave up his Sunday afternoons and 
Monday nights for several months in order to obtain the data for this article." 

Stewart, Ian, The duellist and the monster, Nature 317 (5 September 1985) 12-13. 

Emmy Noether first asked which groups can occur as Galois groups of equations. 
Now it is known that the "monster" group--which rose to fame as the largest 
of the sporadic simple groups--is a Galois group. The proof by J. G. Thompson 
makes heavy use of the function theory of fuchsian groups. 

Stewart, Ian, The Bieberbach gambit, Nature 316 (18 July 1985) 213-214. 

An account of de Branges's proof of the Bieberbach conjecture, with more 
details of the mathematics than one finds in other popular versions. The 
reasons? The author is a mathematician, and the editors were willing to 
tolerate a little notation and some terminology. 

Allman, William F., Staying alive in the 20th century, Science 85 6:8 (1985) 30-41. 

"Our inability to cope with probabilities, says [Amos] Tversky, makes certain- 
ty appealing.... The result is that low probabilities seem greater than they 
are and high probabilities seem less.... Most people overestimated the num- 
bers of deaths from causes that were sensational and underestimated more com- 
mon causes of death that were less dramatic." Data are given on all kinds of 
risks. 

MacHale, Desmond, George BooZe: His Life and Work, Boole Press Ltd., 1985; 
xiii + 304 pp. 

First full-length biography of George Boole (1815-1864). More than just a 
mathematical genius, he was a "child prodigy, self-taught linguist, turbulent 
academic, social reformer, poet, psychologist, humanitarian and lover of ani- 
mals--truly a nineteenth-century polymath." Still a mystery, though, is why 
Boole at Cork and Hamilton at Dublin had almost nothing to do with each other. 

Golub, Gene H., Studies in NumericaZ AnaZysis, MAA, 1984; x + 415 pp, $42 ($31 
to members). 

The ten contributions range over current areas of research in numerical anal- 
ysis, including Newton's method, sparse matrices, conjugate gradient methods, 
and multigrid methods. J. H. Wilkinson's "The perfidious polynomial," in 
which he demonstrates that backwards error analysis should have been discov- 
ered in connection with root-finding on polynomials (instead of matrix eigen- 
value problems), will become a classic. 

Day, Lucille, The world's greatest living geometer, CaZifornia MonthZy (June- 
July 1985) 16-17. 

Thumbnail sketch of S. S. Chern. 
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NEWSe ? L.zsz___ 

26th INTERNATIONAL MATHEMATICAL OLYMPIAD 

The foZZowing are excerpts from a 
report on the 26th InternationaZ Mathe- 
maticaZ OZympiad by M. S. Zlamkin. The 
compZete report, with detaiZs on the 
U.S. and Canadian teams, appears in 
Crux Mathematicorum. 

The Twenty-Sixth International 
Mathematical Olympiad (IM0) was held 
this year in Finland from June 29 to 
July 9. Teams from 38 countries took 
part in the competition. This was 
again a record number of participating 
countries, up from last year's record 
of 34 countries. The team size was 6 
students (maximum number) from each 
country, the same as for the last two 
years. However, if the number of par- 
ticipating countries continues to in- 
crease, the team size will probably be 
reduced to 4 students (as occurred in 
Hungary in 1982). Having a smaller 
team size should make it easier for 
countries with relatively small popula- 
tions to field better teams. Addition- 
ally, the expenses will be reduced and 
the logistics made easier. The total 
number of students was also a record 
one of 208, up from last year's record 
of 192. The countries participating 
for the first time were China, Iran, 
Iceland, and Turkey. 

The 1986, 1987, and 1988 IMO's are 
to be held in Poland, Cuba, and Austra- 
lia, respectively. I fully expect to 
see a new record number of participat- 
ing countries for the 1988 Australian 
IM0. 

The six problems of the competi- 
tion were assigned equal weights of 7 
points each (the same as the last 4 
IMO's) for a maximum possible score of 
42. I believe that this year's compe- 
tition was harder than the previous 
one, as evidenced by only ten students 
having scores of at least 35 (last 
year there were 24 such students), and 
only two perfect scores, 6 less than 
last year. 

The first prize winners were: 

Geza Kos Hungary 42 
Daniel Taturu Romania 42 
Gabor Megyesi Hungary 38 
Nikolai I. Chavdarov Bulgaria 37 
Philippe Alphonse Belgium 36 
Olga Leonteva Soviet Union 36 
Andrew Hassell Australia 35 
Vasil B. Daskalov Bulgaria 35 
Waldemar Horwat U.S.A. 35 
Nguyen T. Dung Vietnam 35 
Hagen V. Eitzen West Germany 34 
Radu Negulescu Romania 34 
Gelca Razvan Romania 34 
Jeremy Kahn U.S.A. 34 

As the IMO Competition is an indi- 
vidual event, the results are announced 
officially only for individual team 
members. However, team standings are 
usually compiled unofficially by adding 
up the scores of individual team mem- 
bers. Since there were quite a few 
teams with less than six students, 
these will be noted in the subsequent 
table. Congratulations to Romania, 
the originator of the IMO in 1959, 
which was first. A list of the top 
fifteen teams follows: 

Rank Country Score 

1 Romania 201 
2 U.S.A. 180 
3 Hungary 168 
4 Bulgaria 165 
5 Vietnam 144 
6 U.S.S.R. 140 
7 West Germany 139 
8 East Germany 136 
9 France 125 

10 Great Britain 121 
11 Australia 117 

12-13 Canada 105 
12-13 Czechoslovakia 105 
14 Poland 101 
15 Brazil 83 
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26TH INTERNATIONAL MATH 
OLYMPIAD SOLUTIONS 

The soZutions that foZZow have been 
especiaZZy prepared for pubZication in 
this MAGAZINE by Loren C. Larson, St. 
OZaf CoZZege. 

1. A circle has center on the side 
AB of the cyclic quadrilateral ABCD. 
The other three sides are tangent to 
the circle. Prove that AD + BC = AB. 

SoZ. Label the figure as shown. 

C 

D 

A 0 B 

We may assume that the radius of the 
circle at 0 is unity. Thus, AD + BC = 

(tan a + tan 2) + (tan 2 + tan 6). 

We know that angle 6 equals the 
angle at B because they are both sup- 
plementary to the angle at D, and 
therefore 6 and 6 are complementary. 
Similarly, a and y are complementary. 
Using this, together with the half- 
angle formula for tangent (easily ob- 
tained from the double-angle formula), 
the last expression becomes 

AD + BC = (cot y + ta 8 ) + 

sec y-1 (~ t Yn - + cot 3)= csc y + csc = tan y 

sec a + sec 6 = AB. 

2. Let n and k be given relatively 
prime natural numbers, 0 < k < n. Each 
number in the set M = {1, 2, ..., n-l} 
is colored either blue or white. It is 
given that 

(i) for each i X M, both i and n-i 
have the same color, and 

(ii) for each i C M, i # k, both i 
and ji - k| have the same color. 

Prove that all numbers in M must have 
the same color. 

SoZ. Let [x] denote the unique 
integer between 1 and k such that 
[x] _ x (mod k). 

Alternate applications of (i) and 
(ii) (see proof that follows) lead one 
to consider the sequence xO,x1,...,xk1 
defined recursively by xo = k and 

In-xi] if i is even, 

t+1 [-xi] if i is odd. 

We will show that x. and x. have the 
same color. 

Suppose i is even. Repeated use of 
(ii) implies that xi, xi+k, xi+2k, .... 

xi+qk all have the same color, where 

q is such that x.+qk < n < xi+(q+l)k. 

By (i), n - (x.+qk) also has the same 

color, and n - (xi+qk) = [n-x ] = xi+l. 
Suppose i is odd. By (ii), |k-xjI 

and x. have the same color, and 

ik-xiI = k-xi = [-Xi] =X. 

It follows that xo, X1, ..., xkl 

all have the same color. 
An easy induction shows that 

X2i-1 = [in] and x2i = [(k-i)n] for 

i = 1,2,... >lk/2j. Thus, 
xo,Xl1... ,xk 1 is a permutation of 

[n], [2n], ..., [kn], and because k 
is relatively prime to n, the latter 
is a permutation of 1,2,... ,k. The 
result now follows from repeated use 
of (ii). 

3. For any polynomial P(x) = 

aO + ax + ... + akx with integer 

coefficients, the number of coeffi- 
cients which are odd is denoted by 
W(P). For i = 0,1,2,... let Qi(x) = 

(l+x) . Prove that if ill i2 ... I n 
are integers such that 0 < i < i2 < 

< i I then n 
w(Q. + Q. + ... + Q. > w(Q.) 

1z (Q Q2 n 1 

SoZ. We will induct on i . The n 
inequality holds when in = 0 or 1. 

Suppose the result holds whenever 
i< <2, and now suppose that n 

28 < i < 2+1 
- n 
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Case 1. Suppose that 2 < i 

Let Q = Q. + ...+Q. . For 

t1 tn 
k = 1,2,... ,n, let = i - 2 and 0k k 
let Q = Q. +...+Q. . Then 

01 0 in' 

Q = Q Q- (l + x )Q (mod 2). Since 
2s 

deg Q < 2 the preceding implies that 
W(Q) = 2W(Q) > 2W(Q. ) (by induction) 

1 

= w((l + x ) ) = w(Q. ). 
01 t11 

Case 2. Suppose there is an 
integer t, 0 < t < n such that 

it < 2 < .t+l Let P Q+...+Qi 
1 t 

andQ=Q +.. .+ Q . Let 
t+l n 

= i s -2 for k = t+l,...,n, and 
k k 

let Q = Q. +...+ Q. . A case 
0t+l 7n 

analysis shows that w(P+Q) + W(Q) > W(P). 

Also, P+Q = P+Q Q _ P + (1+x )Q (mod 2) 
2s 

s 

P + Q + x Q. Since deg(P+Q) < 2, 

the preceding shows that W(P+Q) + 

w(Q) > w(P) > W(Q. ) (inductive 

assumption). 
This completes the induction. 

4. Given a set M of 1985 distinct 
positive integers, none of which has a 
prime divisor greater than 26, prove 
that M contains at least one subset of 
four distinct elements whose product 
is the fourth power of an integer. 

SoZ. We will make use of the 
following. 

Lemma. Any subset S of M with more 
than 512 elements contains two elements 
whose product is a perfect square. 

Proof of Lemma. The elements of S 
n 

1 n2 n9 
have the form p1 p2 ... P9 , where 

Pi = 2 < p2 < ... < p9 = 23 are the 
nine prime numbers less than 26. The 
9-tuple of exponents, (nl1'n2' ***,n9), 

has one of 2 (=512) possible parity 
patterns. By the pigeonhole principle, 
two elements of S will have exponents 
with the same parity pattern. Their 
product is a perfect square. 

By continued use of the Lemma, we 
can find distinct elements 

1' 2' b2'.' la513'b513 in M such 
that a.b. is a perfect square (apply 
the Lemma to the sets M, M-{a1b1 

M-{alb,la,b} .. ). Let C. = a.b.. 

By the proof of the Lemma, there are 
distinct integers i and j such that 
c .c is a perfect square, or equiva- 

lently, c'. = a.b.a.b. is a perfect 
1- 1 J1-OOJ 

fourth power. 

5. A circle with center 0 passes 
through the vertices A and C of tri- 
angle ABC, and intersects the segments 
AB and BC again at distinct points K 
and N , respectively. The circum- 
scribed circles of the triangles ABC 
and KBN intersect at exactly two dis- 
tinct points B and M. Prove that 
angle OMB is a right angle. 

SoZ. The common chords of the 
three pairs of circles are concurrent 
at their radical center P. Let a 
denote angle AYN and let 6 = l80 - a. 
We find (see figure) that ?NMP and 
LNCP are supplementary, so that MNCP 
is a cyclic quadrilateral. Therefore, 

2 2 BMBP = BN-BC = BO - r2, and PM-PB = 

PN*PK = PO - r , where r is the radius 
of the circle through A,C,N,K. Hence 

Po2 _ BO2 = BP(PM-BM) = PM2 _ BM2, or 
B 

K~~~~ 

N~~~ 
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2 2 2 2 
equivalently, Po O PM = BO - BM 
From this it follows that OM is 
perpendicular to BM. 

6. For every real number xi, con- 

struct the sequence xl x2 by 
setting 

x = x (x +-) n+l n n n 

for each n > 1. Prove that there 
exists exactly one value of x for 

which 0 < xn < xn+l < 1 for every n. 

SoZ. For each positive integer n, 

let fn (x) = x(x + - ) for x > 0. Set 

a, = 0 and b, = 1, and for n > 2, let 

-1f-1 -1 1 
n f=l f2 ...fn_1(1- ) and 

-1f-1 -l 
efn n = fl1 2 ...fn 1(1). Define 

F (x) = fnfnj fl(x) for x > 0. 

Then F (an) =' (1 - - ) 1 - - n n fnl nl n 
F (a ) =1 - F (b ) = 1, and n n+l n+l' n n+l 

1 F (b ) =f(l) = 1 + n Thus, 

Fn (an) Fn (an+l) Fn n+l F n ( n) 
Since Fn is an increasing function 

(each fk is increasing), it must be 

the case that a < an+l b 1 < bne 

Let a = Zim a and b = Zim b. The n n 

preceding work shows that a < b. 
Let xl be any real number in the 

interval (0,1). The condition that 
xn+l>x is equivalent to x > 1 - , ' n+ n n n 
and this is equivalent to xl > an. The 

condition that xn+l < 1 is equivalent 

to xl < bn+l. Thus, 0 < x n n+l 
holds for all n if and only if 
a < x < b. 

- 1- 
To prove uniqueness, it suffices to 

prove that a = b, and for this, it is 

sufficient to prove that b - a < - n n n 
The function F l(x) is convex (each 

fk is convex), and therefore, because 

Fn- (0) = O and F n_1(bn) = 1, it follows 

x 
that F (x) < - for 0 < x < bn In 

n 

particular, 1 n = F (a) < al/b 9 n n-~1 1 
nn 

It follows that b a < - b < - n n -n n n 
and this completes the proof. 

MAA AWARDS 

At the annual Business Meeting of 
the Mathematical Association of Ameri- 
ca, held January 10, 1986, in New 
Orleans, Louisiana, three individuals 
received special recognition. 

Arnold Ross of Ohio State Univer- 
sity was awarded the Award for Dis- 
tinguished Service to Mathematics. 
Professor Ross was chosen for this 
award for his "significant impact on 
mathematics on a national scale 
through his unique summer program for 
high school students. He has profound- 
ly influenced many people early in 
their lives, among them, a great 
number of original, now eminent, 
colleagues in mathematics. Indeed, no 
major mathematics conference is with- 
out a few mathematicians who can tell 
of their experience in Professor Ross' 
summer programs." 

George MieZ of the University of 
Nevada, Las Vegas, was awarded the 
Chauvenet Prize "for a noteworthy 
expository or survey paper published 
in a North American journal in 1981- 
83." The article for which Professor 
Miel received the award was "Of calcu- 
lations past and present: the Archi- 
medean algorithm," which appeared in 
the American MathematicaZ MonthZy 90 
(1983), 17-35. The Committee on the 
Chauvenet Prize consisted of Peter J. 
Hilton (chair), Theodore W. Gamelin, 
and Lawrence A. Zalcman. 

Edward W. PackeZ of Lake Forest 
College was awarded the MAA Book 
Prize "for a distinguished, innovative 
book published by the MAA." The book 
for which Professor Packel won the 
prize was The Mathematics of Gcones and 
GambZing, volume 28 in the New Mathe- 
matical Library series of the MAA. 
The Committee on the MAA Book Prize 
consisted of Doris Schattschneider 
(chair), J.A. Seebach, and Gary J. 
Sherman. 
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EDITOR OF MONTHLY NAMED 

The Board of Governors of the MAA, 
at their meeting in Laramie, Wyoming, 
August 11, 1985, elected Herbert Wilf, 
of the University of Pennsylvania, 
Editor of the American MathematicaZ 
MonthZy for a five year term beginning 
January, 1987. Professor Wilf will 
replace Paul Halmos. 

GERHARD N. WOLLAN 

Gerhard N. Wollan of Purdue Univer- 
sity died on July 16, 1985. Professor 
Wollan was Editor of MATHEMATICS 
MAGAZINE from 1971 until 1976. 

ANNOUNCGEMENTS 

The New York State Mathematics 
Association of Two-Year Colleges will 
hold its annual conference at Gros- 
singer's Hotel in Grossinger, New 
York, April 18-20, 1986. For further 
information contact: Gerald M. Smith, 
NYSMATYC President-Elect, Cayuga 
Community College, Auburn, NY 13021 
(Phone: (315) 255-1743). 

Peter J. Hilton will be the princi- 
pal speaker at the annual Pi Mu Epsilon 
Student Conference at St. John's Uni- 
versity, Collegeville, MN 56321, 
March 14-15, 1986. Additional talks 
will be given by students who have 
been working on independent study or 
research projects. For more informa- 
tion contact Mike Gass at (612)363-3192 
or Jerry Lenz at (612) 363-3193. 

The Eugene Strens Memorial Confer- 
ence on Intuitive and Recreational 
Mathematics and Its History will be 
held at the University of Calgary, 
July 27-August 2, 1986. Invited 
speakers include Elwyn Berlekamp, John 
Conway, H.S.M. Coxeter, Kee Dewdney, 
Aviezri Fraenkel, Martin Gardner, Ron 
Graham, Branko Grunbaum, Hendrik 
Lenstra, Willy Moser, Angela Newing, 
Roger Penrose, John Selfridge, Doris 
Schattschneider, and David Singmaster. 
For further information contact 
Richard Guy or Bill Sands, Department 
of Mathematics and Statistics, The 
University of Calgary, Calgary, 
Alberta, Canada T2N 1N4 

INTERNATIONAL CONGRESS IN 
BERKELEY 

For the first time since 1950 an 
International Congress of Mathemati- 
cians will be held in the United 
States. The last Congress in America 
was in 1950 in Cambridge, Massachu- 
setts; the last on this continent in 
Vancouver in 1974. The highlight of 
the Congress for many will be the 
awarding of the Fields Medals. At 
each Congress since the Oslo Congress 
of 1936 these prizes have been given 
to the two (or in some years four) 
mathematicians under the age of 40 who 
have made important contributions to 
mathematics. Congresses are held only 
every four years. The Fields Medals 
are viewed as comparable to Nobel 
Prizes, though the criteria for selec- 
tion are quite different. 

The Congress in Berkeley will take 
place August 3-11, 1986. There will 
be 19 areas of mathematics covered. 

For more information write ICM-86, 
Post Office Box 6887, Providence, RI 
02940. 

USCMI PRE-CONGRESS SERIES OF 
INVITED SURVEY TALKS 

On the afternoon of August 2nd, 
1986, The United States Commission on 
Mathematical Instruction will sponsor 
a series of invited survey talks aimed 
at enhancing understanding and appre- 
ciation of some of the major research- 
related work which will be discussed 
at ICM-86. 

The USCMI invites recommendations 
of potential speakers and their areas 
of interest. Please send all sugges- 
tions to the session organizer: 
Warren Page, New York City Technical 
College, 300 Jay Street, Brooklyn, 
NY 11201. 

Further details, including the 
names of speakers and titles of their 
survey talks will be announced in a 
forthcoming issue of MATHEMATICS 
MAGAZINE. 
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THE EUGENE STRENS MEMORIAL CONFERENCE ON INTUITIVE 

& RECREATIONAL MATHEMATICS & ITS HISTORY 

July 27 to August 2, 1986 

THE UNIVERSITY OF CALGARY 

to mark the acquisition by the University Library of the Strens Collection. 

Invited speakers include Elwyn Berlekamp, John Conway, H.S.M. Coxeter, 
Kee Dewdney, Aviezri Fraenkel, Martin Gar.dner, Ron Graham, Branko Griuinbaum, 
Hendrik Lenstra, Willy Moser, Angela Newing, Roger Penrose, John Selfridge, 
Doris Schattschneider & David Singmaster. 

For information and application forms, write to Richard Guy & Bill Sands, 
Department of Mathematics & Statistics, The University of Calgary, Calgary, 
Alberta, Canada T2N 1N4. 

MAA Placement Tests can 
help solve your college's 
mathematics placement 
problems. 
* Arithmetic & Basic Skills 

_ Basic Algebra 
* Advanced Algebra 
* Trigonometry/Elementary Functions 
* Calculus Readiness 

MAiA PLACEMAENT TEST PROGRA 
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Science In the first person 
This delightful memoir traces the life of its prize-winning 
author from his youth in Poland through his long and bril- 
liant career in mathematical research in the United States. 
Kac is eloquent and outspoken on matters ranging from 
anti-Semitism in prewar Poland to his major contribu- 
tion in probability theory to his views on pure 
versus ' applied" mathematics. ENIGMAS OF 
CHANCE is a rare look into the world of 

Sixth volume in the ALFRED P. SLOAN FO 

For the Mathematician.. 
- NUMBER SYSTEMS AND THE FOUNDATIONS OF ANALYSIS 

by Elliott Mendelson 
Orig. Ed. 1973, Reprint 1985 w/corr 370 pp. $24.95 
The book traces the development of the number systems, from the natural numbers 
through the integers, rational numbers, and real numbers (with appendices on complex 
numbers and cardinal numbers). The emphasis is on clear, precise explanations of ideas, 
after the need for them has been adequately motivated. To help the beginner, proofs are 
given in painstaking detail. Understanding of the meaning and the properties of the 
various kinds of numbers used in mathematics is necessary for all scientists, and for 
teachers of mathematics in secondary schools and colleges. The book provides complete 
treatment of the underlying ideas and the proofs of the fundamental results concerning 
the number systems. 

-4 NORMAL APPROXIMATION AND ASYMPTOTIC EXPANSIONS 
by R.N. Bhattacharya & R. Ranga Rao 
Orig. Ed. 1976, Reprint 1985 w/corr 288 pp. $46.95 

- THE ALGEBRAIC STRUCTURE OF GROUP RINGS 
by Donald S. Passman 
Orig. Ed. 1977, Reprint 1985 w/corr 750 pp. $59.95 

When orderlng,please add $4.00 for first book ($1.00 each additional) to cover shipping. 

KRIEGER PUBLISHING COMPANY, INC. 
P.O. Box 9542 * Melbourne, FL 32902-9542 * (305) 724-9542 
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